Traitement de signaux radiofréquences sur FPGA A.G. First-TF

P.-Y. Bourgeois

FEMTO-ST Time & Frequency dpt, Besançon, France

Lundi 16 mars 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Contexte / Contributeurs

Contexte/Challenges

- $\blacktriangleright\,$ Maîtriser le traitement de signaux rf en temps réèl $\rightarrow\,$ FPGA
- Analyse d'oscillateurs (ultrastables/faible bruit de phase)
 - $u_0 \rightarrow 100$ MHz, bande d'analyse (sub-Hz $\rightarrow 10$ MHz) voire plus
 - $\mathcal{L}(f) < -160 \text{ dBc/Hz} (10-10 \text{ kHz}) [1]$
 - ▶ palier de bruit blanc de phase < -185 dBc, méthode interférométrique [1]
- Radio définie par logiciel (SDR) : applications aux systèmes de positionnement et de datation par satellites
- ▶ Investir les terrains Recherche, Radio-Amateurs, Enseignement et Vulgarisation

Contributeurs

- Digital Geeks : P.-Y. Bourgeois, J.-M. Friedt, G. Goavec-Merou, T. Imaike
- 'Analog' Geeks : E. Rubiola, F. Vernotte, G. Cabodevila

Financement

- PIA Oscillator-IMP
- Région FC
- LabeX First-TF : stagiaires Carolina Cárdenas & Sara Martinez Gutierrez

[1] C.W. Nelson, and D.A. Howe, A sub-sampling digital PM/AM noise measurement system, IEEE International Frequency Control Symposium (FCS), 2012 tf. boulder.nist.gov/general/pdf/2650.pdf

Radio définie par logiciel (SDR)

Applications aux systèmes de positionnement et de datation par satellites

but: implémenter en logiciel le 'phase tracking' du signal acquis de plusieurs satellites GPS afin de reconstruire au sol une copie du temps GPS pour l'asservissement d'oscillateurs (GPS phase recovery)

GNSS

Horloges C_s embarquées

Récepteur GPS bas-coût

- résolution : 8 bits, bande passante 2,4 MHz (USB)
- TF, marégraphes, concentration eau atmosphère . . .
- traitement : gnss-sdr/GNURadio/octave

Radio définie par logiciel (SDR)

Applications aux systèmes de positionnement et de datation par satellites

- Le modulateur génère l'information
- L'information est encodée dans la phase de la porteuse
- Elle est contenue dans un signal dont la fréquence varie par effet Doppler¹, dérive et stabilité de l'OL²
- la puissance du signal reçu est sous le bruit thermique
- On retrouve l'information utile
 - par démodulation cohérente
 - par intercorrélations pour identifier le message contenu dans 1 satellite (on reçoit tout en même temps)
 - soit 2 boucles de contrôle (carrier & code tracking)

 $^{^{1}}$ $\sim \pm$ 4 kHz, d'horizon à horizon

²on considère les effets ionosphériques et autres du second ordre $\square \rightarrow \langle \square \rangle \rightarrow \langle \square \rightarrow \langle \square \rangle \rightarrow \langle \square \rightarrow \rangle$

output if PLL is omitted

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Approche Logicielle SDR avec Gnu-Radio, Démodulation par boucle de Costas

Seules des boucles internes (implémentées sous forme de blocs) sont autorisées par GNURadio

Approche Logicielle

Identification des satellites par intercorrélation s_{demod} et codes PRN (Gnss-sdr vs GNU octave)

Principe du CDMA : chaque bit utile transmis (*navigation data*) est encodé par l'identifiant du satellite.

$$DVB-T \xrightarrow{1}_{Q} | = |xcorr((s \times LO), PRN)|$$
$$NCO_{f} \in \mathbb{C} \quad PRN \in \mathbb{R}$$

- Tous les satellites émettent sur la même fréquence (1574,2 MHz), leur identifiant les différencie.
- Chaque identifiant est répété chaque milliseconde, NAV est à 50 bps donc 20 points/bit.
- Temps de calcul proportionnel au décalage Doppler (nombre et résolution FFT)
- Augmenter la résolution en ajustant la fréquence d'échantillonnage³ peut limiter les performances logicielles → FPGA
- gnss-sdr : $f_{N_{\text{lim}}} = 2 \text{ MHz}$
- pas de phase-tracking

ID = PRN, ici 7,11,19,27,30, octave

GPS TOW: 299662 23972.960000
~ UTC: Wed Oct 22 13:14:23 2014
Current TOW obtained from SUPL assistance = 299662
Reference location (defined in config file):
Latitude=47.3 []
Longitude=6 []
Altitude=10 [m]
Doppler analysis results:
SV ID Measured [Hz] Predicted [Hz]
7 89250.00 -1745.40
11 93875.00 3382.16
19 91625.00 1541.05
27 90000.00 -209.33
30 90000.00 -244.43
Parameters estimation for Elonics E4000 Front-End:
Sampling frequency =1999885.36 [Hz]
IF bias present in baseband=90302.65 [Hz]
Reference oscillator error =-57.32 [ppm]
Corrected Doppler vs. Predicted
SV ID Corrected [Hz] Predicted [Hz]
7 -1052.65 -1745.40
11 3572.35 3382.16
s 19 1322.35 1541.05
27 -302.65 -209.33
30 -302.65 -244.43
GNSS-SDR Front-end calibration program ended.

I ∃ ►

3

sortie gnss-sdr ³NB: la résolution dépend directement de la bande passante d'analyse d∂ → d ≣

Approche Mixte Phase tracking de l'oscillateur local

- Implémentation d'un correcteur de suivi de la fréquence de l'OL pour compenser les effets Doppler, dérives ...
- Un asservissement sur le code PRN peut-être souhaitable (permettrait de réduire la contrainte sampling hf + temps de calcul)

Quick reminder on implementing a feedback loop control:

$$C(z) = \frac{O(z)}{I(z)} = \frac{a.z+b}{c.z+d} = \frac{a+b.z^{-1}}{c+d.z^{-1}} \to c.O_k + d.O_{k-1} = a.I_k + b.I_{k-1}$$

or
$$O_k = a/c.I_k + b/c.I_{k-1} - d/c.O_{k-1}$$

Test 'offline' de l'asservissement de phase

Tracking phase avec le quartz du dongle

Tracking phase avec un R&S SMA100

(日)、

э

Bilan

- Construction d'un récepteur GPS bas coût : Antenne + DVB-T + gnss-sdr + GNURadio
 - Démodulation par boucle de Costas
 - Identification des satellites par intercorrélation
 - Correcteur de suivi de fréquence
- Démonstrateur générateur de code pseudo-aléatoire sur FPGA
- Démonstrations et sessions à l'EFTS 2015
- > En cours : implantation d'un correcteur permettant d'asservir
- A venir : implémentation d'une chaîne de traitement complète à base de FPGA/CPU
 - Etage d'entrée, ADC haute vitesse
 - FPGA : démodulation, intercorrélation et tracking
 - post-traitement GNURadio

¹ J.-M. Friedt, La réception de signaux venus de l'espace par récepteur de télévision numérique terrestre, OpenSilicium 13, Dec2014/Jan-Fev 2015

² S. Martinez Gutierrez, J.-M Friedt, G. Cabodevila, P.Y Bourgeois, E. Rubiola, Software Defined Radio for processing GNSS signals, FOSDEM 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

L'analyse métrologique d'oscillateurs ultrastables Constats (2015)

- Outils d'analyse (Analogiques, Semi-numériques, Tout-numériques)
 - Instruments proriétaires (Black-boxes) et chers
 - Mesures Poddar/Rohde : 12 dB de dispersion à 10 kHz entre instruments !
 - Les compteurs de fréquences montrent des bizarreries / limitations
 - Les bancs de mesure de bruit de phase embarquent des artefacts non expliqués, cachent des informations
 - L'accès aux samples et filtres utilisés est limité ou interdit
- Variances :
 - Code disséminé/propriétaire, peu de code libre (SigmaTheta, avis aux contributeurs !)
- Analyse spectrale de bruit
 - Code absent

un des challenges pour First-TF : Mesures de haute précision de l'espace-temps⁴

Notre approche

- Comprendre et maîtriser tous les aspects liés au traitement numérique des signaux rf
- Utiliser la puissance de l'open-source pour propager nos solutions, garantir un code sain, faciliter la reproductibilité et le contrôle des expériences métrologiques
- Procurer un dispositif temps-réèl maîtrisé et adaptatif (White Box)

Banc d'analyse de performances d'oscillateurs ultrastables Les raisons du tout numérique

Points bloquants

- Calcul de l'arctan
- ► FFT
- résolution encore limitée des ADC

- Multi-référence
- Cycles de mesures courts
- Temps-réèl
- Tous les samples sont traités
- Fréquence porteuse plus élevée
- Bande d'analyse élevée
- Planchers de bruits améliorés
- Calcul simultané et discriminé AM/PM
- Contrôle total de la chaîne de mesure

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $\sigma_y(\tau)$ et analyse Tricorner

Socs FPGA

Les FPGA modernes sont à fortes capacités, permettent de lourds traitements parallèles et temps-réèl dans le flux (plusieurs Gops) :

- +de 6 M de portes logiques
- ► 0.5 M flip-flop
- plusieurs TMACs

Couplé efficacement à un CPU, le couple FPGA/CPU devient redoutable. Depuis peu, le couple peut siéger dans le même SoC (et en multi-coeurs). Nous avons pris la résolution de nous tourner vers ce nouveau type d'outil, même si la courbe d'apprentissage est rude.

A noter que l'implémentation de calcul en double précision devient possible.

Architectures under test at FEMTO-ST

- Alazartech 9625, 2x Stratix III (main/coprocessor FPGAs), Pcie, 250 Msps, 16bits (12 effectifs) 2 cartes 2 voies (4ch) synchronisées
- Zynq (2cores), ZC706 + 4x ADC LT2158 (14 bits 310 Msps, tests 250Msps)
- Zynq (2 cores), Redpitaya, 2x ADC LTC2145 (14 bits 125 Msps)

On attend l'APF6 d'Armadeus Systems, (i.MX6, quad core, FPGA Cyclone V)

Principe d'un banc numérique de mesure de bruit

Bruit de phase d'ADC/frontend

- Succession d'étages filtrage/décimation (de 1 à 3) dans le FPGA⁵
- Mesure $S_{\varphi}(f) \sim S_{v}(f)$ car P est normalisé
- Seuls subsistent une partie du jitter clock (split clk \rightarrow ADC) + frontend rf

 $^{^{5}}$ résolution maximale dans le $1^{
m er}$ étage

Single Channel noise measurement

- n_{CLK} are removed
- n_{ADC} are added
- if n_{DUT} < n_{PNM} and n_{REF} < n_{PNM} then we have a n_{PNM} noise measurement.
- if A = B and n_{A/B} < n_{PNM}, only ADCs added noise remains (as shown in preceding slide)

•
$$\sigma^2 = \frac{q^2}{12} = 3.1 \cdot 10^{-8} V^2$$

 $\begin{array}{l} \blacktriangleright \quad \mbox{total noise} = \mathcal{N}_t = \frac{\sigma^2}{FPBW} \mbox{ if } \\ FPBW > f_N = fs/2 \mbox{ else } \mathcal{N}_t = \frac{\sigma^2}{f_N} \,. \\ \mbox{Here, } FPBW = 150 \cdot 10^6 \mbox{ so} \\ \mathcal{N}_t = 2 \cdot 10^{-16} V^2 / Hz. \end{array}$

$$S_{floor} = -156.8 dbV^2 / Hz$$

 Measurement indicates -158.6+3=-155.6.

From this we deduce
$$ENOB =$$

 $\log_2 \left(1 + \frac{v_{fsr}}{\sqrt{12 \cdot f_N \cdot 10} \frac{S_{floor}}{10}} \right) =$

11.93bits matching the datasheet ENOB...

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Application : mesure du bruit de phase de CSO

Schéma de mesure par intercorrélation à 2 canaux suffisant Comparaison avec le système de référence (état de l'art) Symmetricom TSC5125

1000 corr (n_corr / 10 each decade / 10)

The magic of 4-ch digital Cross-spectrum

The magic of 4-ch digital Cross-spectrum

Limite (1000 corr) / Application à la mesure d'un synthé commercial à faible bruit de phase

・ロト ・ 雪 ト ・ ヨ ト

ъ

Bilan

- Un banc d'analyse de bruit de phase à l'état de l'art entièrement numérique
 - Palier de bruit blanc pour l'instant à -185 dBc, porteuse 10 MHz
 - ▶ L(f) < -160 dBc à 10 kHz</p>

et dont :

- la chaîne de traitement est maîtrisée (et chaque étage est optimisé)
- NCO square validé (avec restrictions)
- Filtrage décimateurs à convolution sinc 128 coefficients avec fenêtre d'apodisation
- Calcul de l'arctan, point encore bloquant (notre tentative à base de CORDIC non encore validée, et solutions alternatives à l'étude)
- FFT pas encore dans le FPGA
- Transfert CPU externe par Gb ethernet validé à 20 Msps (merci la DMA)
- Première mesure de bruit de phase d'ADC rapides (sic!)
- En cours : validation phasemètre en mode compteur haute sensibilité (Π, Λ, Ω)
- En cours : modélisation complète des sources de bruit (quantif) à chaque étage
- A faire : se greffer sur GNURadio pour boucler la boucle et profiter de son ordonnanceur et gestion de threads = s'assurer un 'vrai' temps-réèl à haute vitesse, sans pertes
- A faire :

G. Bres-Saix, C. Nelson, A. Hati, G. Goavec-Merou, P.-Y. Bourgeois, E. Rubiola and D. Howe, A Zyng-based digital phase and amplitude measurement system, IFCS 2015

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

P.-Y. Bourgeois, T. Imaike, G. Goavec-Merou and E. Rubiola, Noise in high-speed Analog to Digital Converters, IFCS 2015 P.-Y. Bourgeois, T. Imaike, G. Goavec-Merou, F. Vernotte and E. Rubiola, All-digital high-sensitivity realtime oscillator instability measurement system, to be pub. A table!