

Laboratoire Kastler Brossel Physique quantique et applications

Sympathetic cooling using laser cooled Be⁺ ions : precision measurements using light ions

L. Hilico, LKB

The team

Albane Douillet, MCF Jean-Philippe Karr, MCF Laurent Hilico, PR

Nicolas Sillitoe PhD Johannes Heinrich PhD

The team

Albane Douillet, MCF Jean-Philippe Karr, MCF Laurent Hilico, PR

Nicolas Sillitoe PhD Johannes Heinrich PhD

• The objectives

H₂⁺ spectroscopy

The Gbar project

Highly charged ions

• The First TF contribution

How to cool ions when buffer gas cooling is not cold enough laser cooling is not possible ?

How to cool ions when buffer gas cooling is not cold enough laser cooling is not possible ?

Several ion species Trap Force + Coulomb repulsion Laser cooling of one specie

cooling of the other species

How to cool ions when buffer gas cooling is not cold enough laser cooling is not possible ?

Several ion species Trap Force + Coulomb repulsion Laser cooling of one specie

cooling of the other species

How to cool ions when buffer gas cooling is not cold enough laser cooling is not possible ?

Several ion species Trap Force + Coulomb repulsion Laser cooling of one specie

cooling of the other species

Examples

- Cold molecular ions MgH⁺, Biomolec⁺ for spectroscopy
- Ultra cold chemistry
- NIST, PTB AI+/Mg+ and AI+/Be+ optical clocks

- Molecular bound level QED
- Direct optical determination of

 $m_{_p}/m_{_e}$

- Molecular bound level QED
- Direct optical determination of

 $m_{_p}/m_{_e}$

Idea: quasi harmonic vibrational levels

 $\frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta (m_p / m_e)}{m_p / m_e}$

- Molecular bound level QED
- Direct optical determination of

 m_{p}/m_{e}

Idea: quasi harmonic vibrational levels

$$\frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta (m_{p} / m_{e})}{m_{p} / m_{e}}$$

Codata:

$$\frac{\Delta(m_{p} / m_{e})}{m_{p} / m_{e}} = 4.110^{-10} \qquad m_{e} / m_{12}_{C}$$
Mainz, Werth/Blaum

$$m_{_p}/m_{_{^{12}}c}$$
Van Dyck

Accurate relativistic and QED corrections in H₂⁺ and HD⁺ Karr, Korobov, Hilico

$$\frac{\Delta(m_{p}/m_{e})}{m_{p}/m_{e}} = 6.10^{-11} \dots 1.510^{-11}$$

better than new Mainz m_{e}/m_{12}

Experimental method

REMPD resonance enhanced multiphoton dissociation

on trapped ions

• Düsseldorf, S. Schiller HD⁺ dipole transition $\delta v=4$, $\Delta v/v \sim 2$. 10⁻⁹

Limited by Doppler effect

• Amsterdam, J. Koelemeij HD⁺ dipole transition $\delta v=8$, $\Delta v/v \sim 2$. 10⁻⁹

• Paris, LKB H_2^+ Doppler-free two photon transition at 9.166 μ m

1.5 10⁻¹¹ ↔ 500 Hz

• Two photon excitation source

Ultrastable 9.17 µm quantum cascade laser phase-locked to a CO₂ laser

F. Bielsa, A. Douillet, T. Valenzuela, J.-Ph. Karr, L. Hilico, Optics Letters 32, 1641-1643 (2007)

• Hyperbolic ion trap + electron impact ionisation + photodissociation, no cooling

A new 3+1 REMPI ion source

To the trap

A new ion trap

Be⁺ ion cooling 313 nm -H₂⁺ excitation 9.166 μ m -

Photodissociation 213 nm

International collaboration to mesure gravity \bar{g} on antimatter neutral atoms Ħ

International collaboration to mesure gravity \bar{g} on antimatter neutral atoms \bar{H}

State of the art : $-110 \text{ g} \le \overline{g} \le 110 \text{ g}$ Nature comm. 2013

Requirements for 1% accuracy on $\bar{\rm g}$

- 30 cm free fall
- initial velocity $\leq 1 \text{ m/s}$

impossible with $\overline{\mathrm{H}}$ direct laser cooling

International collaboration to mesure gravity \bar{g} on antimatter neutral atoms $~\overline{\rm H}$

State of the art : $-110 \text{ g} \le \overline{g} \le 110 \text{ g}$

Requirements for 1% accuracy on $\bar{\rm g}$

- 30 cm free fall
- initial velocity $\leq 1 \text{ m/s}$

impossible with $\overline{\mathrm{H}}$ direct laser cooling

The Walz & Hänsch idea General relativity and gravitation, 36, 561 (2004)

- 1- Produce \overline{H}^+ ions
- 2- Sympathetically cool \overline{H}^+ ions
- 3- Photodetach the excess positron
- 4- Mesure the $\overline{\mathrm{H}}$ free fall

 Cooling challenge
 20 μK
 1 .. 6 keV

 3 neV
 Temp ~ 60 .. 300 eV

Highly charged ion

- Relativistic and QED tests at high Z
- Candidates for atomic clocks ? Derevianko, Dzuba, Flambaum, PRL 109, 180801 (2012)

Natural lifetime \leq mHz Q = 2. 10¹⁹ for E2 transitions

Same electronic level \Rightarrow v immune against perturbations (stark, Zeeman, BBR, ...)

Natural lifetime \leq mHz Q = 2. 10¹⁹ for E2 transitions

Same electronic level \Rightarrow **v** immune against perturbations (stark, Zeeman, BBR, ...)

Second order Doppler effect

$$\frac{\Delta v}{v} = \frac{3k_{\rm B}T}{mc^2}$$

Sympathetically cooled heavy ions \rightarrow small second order Doppler effect

Natural lifetime \leq mHz Q = 2. 10¹⁹ for E2 transitions

Same electronic level \Rightarrow **v** immune against perturbations (stark, Zeeman, BBR, ...)

Second order Doppler effect

$$\frac{\Delta v}{v} = \frac{3k_{\rm B}T}{mc^2}$$

Sympathetically cooled heavy ions \rightarrow small second order Doppler effect

NIST ²⁷Al⁺/Mg⁺ systematic uncertainty ~ 7.8 10⁻¹⁸ ²⁰⁸Pb²⁸⁺/Be⁺ ~ 1. 10⁻¹⁸ The First-TF contribution

A HIGHFINESSE WS7 wavemeter cofinancing

Be⁺ cooling fiber lasers $1550 + 1051 \rightarrow 626$ nm DBR 626 nm laser diodes (project)

 $626 \text{ x } 2 \rightarrow \textbf{313} \text{ nm}$

 H_2^+ creation pulsed 303 nm

 H_2^+ dissociation pulsed 213 nm

Gbar Ps excitation pulsed 410 or 243 nm Gbar \overline{H}^+ photodetachment 1.7 µm

 H_2^+ two-photon excitation 9.166 µm = 91660 nm

Collaboration with Tübingen university WS6 / WS7 for mid-IR/fIR