

LE progrès, une passion à partager

Systèmes de Référence Temps-Espace

Atomic time: past, present & future realizations

Sébastien BIZE LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06

Journée scientifique : la seconde atomique à cinquante ans October 13th 2017 Observatoire de Paris, France

Topics covered in this presentation

- Concepts underpinning atomic time
- 3 generations of atomic frequency standards
- From frequency standards to timescales
- Frequency standards in the curved space-time

Periodic phenomena and the idea of time

- Humans perceive phenomena that seem to repeat regularly
 - Day/night cycles, oscillations of a pendulum, cardiac cycles, etc.

Succession of identical events can be counted and labelled

Sun at meridian, extremum of pendulum motion, etc.

Labelled events can be used to mark other phenomena

 Works if no error is made in counting and if the origin of counting process is agreed upon

Many different such scales are found consistent at some level

• \rightarrow leads to the idea, to the possibility and to the usefulness of time, the continuous variable *t* used in physics

Fundamentals of realizing time intervals

Observing and counting a periodic physical signal

Quality of time intervals determined by the stability of chosen periodic phenomenon

→ Frequency standard to generate periodic signal whose frequency is as stable as possible

Realization of time intervals should be as universal as possible

A universal & (almost) perfect reference

Atoms have quantized, discrete energy levels

Energy differences between levels correspond to frequencies

via Planck's relation

Bohr frequencies of an unperturbed atom are thought to be perfectly stable and universal

- Two atoms of the same atomic species are identical
- Atoms do not wear up or age

Definition of the SI second

Definition

 The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.

2 Sv/2

2 P3/2

2B/2

2 D5/2

2Dv2

2F7/2

2 F5/2

cm⁻¹

e٧

Hyperfine interaction

Principle of atomic frequency standards

Building blocks of an atomic frequency standard

Output of a frequency standard

- Macroscopic, practically usable oscillatory electromagnetic signal whose frequency is connected to the atomic transition
- With frequency offset and noise

$$\omega(t) = \omega_{ef} \times (1 + \varepsilon + y(t))$$

Essential properties of atomic frequency standards

- Accuracy: overall uncertainty on ε
- Stability: statistical properties of y(t), characterized with $\sigma_v(\tau)$

Physics underneath (stability and) accuracy

Effects of external motion

- Kinetic energy adds to the internal energy a continuum of energy
- \rightarrow Limitation of interrogation duration
- \rightarrow Doppler shift
- \rightarrow Recoil shift
- →Relativistic time dilation

□ A concern for all atomic frequency standards

- Magnitude of Doppler shift
 - \rightarrow hot atoms: 100 m.s⁻¹ $\rightarrow \frac{\delta\nu}{\nu} \sim \frac{v}{c} \sim 3 \times 10^{-6}$

□ Three generations of atomic frequency standard

- \rightarrow enabled and characterized by breakthroughs in ways to dealing with external motion

Physics underneath (stability and) accuracy

Effect of thermal radiation

- Blackbody radiation = electromagnetic radiation in thermal equilibrium with the environment, described by Planck's law, Stefan-Boltzmann law, etc.
- Atoms are unavoidably immersed into this field
- →Fluctuating electric (and magnetic) field

 $\langle E^2 \rangle^{1/2} = 831.9 \text{ V.m}^{-1} \text{ at } T_0 = 300 \text{ K}$

$$\langle E^2 \rangle = K_E \left(\frac{T}{T_0}\right)$$

Molecular potentials

atomic coefficient

 \sim -1.7×10⁻¹⁴ for Cs

Shift depends on atomic density

 $\delta\nu \simeq -\frac{1}{2\pi\hbar} \times \frac{1}{2} \Delta \alpha \langle E^2 \rangle$

Can exhibit complex physics especially in the cold/ultra-cold regime

external field

Plenty of other physical and technical effects

Frequency standards do not come with a comprehensive list

1st generation: thermal atomic beam

10

Control of external motion

Standing wave in Ramsey cavity, beam reversal, determination of velocity distribution

Thermal beam primary frequency standards

Institutes

NIST, PTB, NRC, CRL, SYRTE, etc.

Use until now

- Cs transition first observed in 1952
- PTB-CS1 & CS2 still calibrating TAI
- SYRTE-JPO stopped in 2010

SYRTE, JPO

2nd generation: laser-cooled atomic fountain

□ Principle

- Laser-cooled atomic sample
- Velocity spread ~ 1 cm.s⁻¹

Characteristics

- $\Delta v \sim 1~Hz$, $Q_{at} \sim 10^{10}$
- Stability: 1.5×10⁻¹⁴ in 1 s
- Accuracy: 2×10⁻¹⁶

Error no larger than <100 s over the age of the Universe

Control of external motion

 Cold atoms, standing wave in Ramsey cavity, reversal of trajectories due to gravity

interrogation

selection

capture

Fountain primary frequency standards

Institutes

- SYRTE, PTB, NPL, NIST, INRIM, etc.
- Proof-of-principle 1989 (Stanford) & 1991 (LKB with SYRTE+NIST)
- 1st fountain standard 1995 (SYRTE)
- □ Define the accuracy of TAI
 - \rightarrow accuracy delivered to users

Used to steer some local timescales

UTC(USNO), UTC(PTB), UTC(OP)

TAI calibration's by primary frequency standard

A demanding task

- 14 Cs fountains from 10 institutes contributed at least once
- The vast majority of calibrations come from 3-4 institutes
- Over 15 years, LNE-SYRTE provided >200 calibrations, more than 40%

Not only with Cs

SYRTE pioneered using a secondary representation of the SI second, the ⁸⁷Rb hyperfine transition

SYRTE, FO2-Cs & FO2-Rb

From frequency standards to timescales

□ How to know that the accuracy is (probably) right?

ightarrow Comparisons of 2 (or more) identical standards are essential

Two completely independent timescales diverge from each other

• \rightarrow random walk (or worse) of the time difference

 $\langle \nu_1(t) - \nu_2(t) \rangle_{\tau} = 0 ?$

□ A single shared conventional reference timescale

- Needed for consistent worldwide timekeeping
- \rightarrow TAI/UTC and local physical realizations UTC(k) steered to UTC
- Note: TAI/UTC diverges the same way with respect to an ideal representation of time

Frequency standards in the curved space-time

- Space-time is modified in the vicinity of massive objects
 - Described by Einstein's general relativity
 - \rightarrow gravitational redshift: 10⁻¹⁶/m at the surface of the Earth

A frequency standard realizes its proper time

Valid only in a small surrounding volume that can be considered flat

$$\frac{?}{?} \frac{?}{\sqrt{c^2}} \frac{?}{\sqrt{c^2}} \frac{1}{\sqrt{c^2}} \frac{1}{\sqrt{c^2}} \frac{V^2}{c^2} dT_{t}$$

 $\frac{\nu_2}{\nu_1} = \left(1 - \frac{U_2 - U_1}{c^2}\right)$

Unavoidably, frequency standard comparisons in the vicinity of the Earth are general relativity experiments

- Need to define a global coordinate system
- Need to account for gravity precisely
- Elaboration of TAI is no exception. TAI is a realization of TT itself defined by a constant rate wrt to TCG, etc.

 $U(\vec{r}) \simeq GM/$

3rd generation: optical frequency standards

Principle

- An optical transition: $10^{14} 10^{15}$ Hz
- ightarrow Probed with ultra-stable laser light
- Tightly bound atoms giving quantized states of motion
- → Lamb-Dicke spectroscopy

~10 MH

- $\Delta \nu \sim 1$ Hz on the optical carrier, $Q_{at} \sim 10^{15}$
- Stability: 1.4×10⁻¹⁶ in 1 s (optical lattice clock)
- Uncertainty: as low as 2.1×10⁻¹⁸

Error no larger than <1 s over the age of the Universe

Control of external motion

Motional effects in sidebands, carrier transition essentially unaffected

0.3

0.2

0.1

0.0

ransition probability

BUT: need to care about effects of the trap

Optical frequency standards

□ The output is laser light with ultra-stable frequency

Optical frequency comb

- To connect optical frequencies between them
- To connect optical domain to microwave domain

Microwave signal referenced to the optical transition

Compatible with existing schemes and systems

First calibrations of TAI with an optical frequency standard

- Pioneered by SYRTE with strontium optical lattice clocks (⁸⁷Sr ¹S₀-³P₀ transition)
- Can be done only if the absolute frequency of the new transition has been measured accurately, close of the limit of primary frequency standard

Progress of frequency standards over time

Points toward a redefinition of the second

- Based optical transition(s)
- Potentially, more fundamental definitions also possible

□ Cs frequency standard defined a "high standard"

- In terms of operability, service to TAI, etc.
- \rightarrow Optical frequency standards have to demonstrate their readiness

 $h\nu = \Delta E = \Delta mc^2$