### Journée thématique sur le bruit et les lasers femtosecondes



# CSEM

technologies that make <mark>the</mark> difference

# Technologies lasers bas bruits et sources de bruit

Institut d'Optique, CNRS, Université de Bordeaux Bordeaux 18.01.2018

steve.lecomte@csem.ch



# Outline

- : Mode-locked lasers as low-noise oscillators
- **::** Amplitude, CEO phase, optical phase, and timing jitter noise
- **::** Elastic tape model & frequency dependance on gain and loss perturbations
- Noise sources (vibration, thermal & acoustics, pump RIN, quantum noise, dispersion, slow saturable absorber, self-steepening and Kramers-Kronig)
- **::** Results (RIN, pulse jitter and microwave generation)
- **::** Stabilization techniques for fceo and frep
- **::** Summary and conclusions



# Mode-locked laser based on DPSSL technology

: Diode-pumped solid-state laser - DPSSL



### **Output of a modelocked femtosecond laser**



Figure from J. Kim and Y. Song, Adv. In Opt. And Phot. 8 465-540, 2016

# **Passive modelocking of solid-state lasers**

**::** Kerr lens and saturable absorber



| Parameter        | Kerr lens             | Saturable absorber    |
|------------------|-----------------------|-----------------------|
| Recovery time    | Fast (instantaneous)  | «Slow»                |
| Self-starting ML | Usually not           | Yes                   |
| Wrt noise        | Best case             | The faster the better |
| Laser type       | Ti:sapphire typically | Any type              |

Left figure from wikipedia



### **Dynamics in solid-state laser vs. absorber speed**



Figures from www.rp-photonics.com



# Passive mode-locking with Semiconductor Saturable Absorber Mirror (SESAM)



# Passive mode-locking with Semiconductor Saturable Absorber Mirror (SESAM)



### **Relevant laser parameters wrt noise**

- **::** Amplitude RIN (Relative Intensity Noise)
- : Pulse train timing jitter
- :: Optical phase of the comb modes
- :: Carrier-enveloppe offset phase noise

$$A(t) = [A_0 + \Delta A_0(t)] \sum_{m=-\infty}^{+\infty} a(t - mT_R + \Delta T_R(t)) \exp[j\{2\pi\nu_c t + m\Phi_{\rm CE} + \Delta\theta(t)\}]$$



Figure from J. Kim and Y. Song, Adv. In Opt. And Phot. 8 465-540, 2016

## **Amplitude noise - RIN**



Figure from J. Kim and Y. Song, Adv. In Opt. And Phot. 8 465-540, 2016

### **Pulse train timing jitter**



Figure from J. Kim and Y. Song, Adv. In Opt. And Phot. 8 465-540, 2016

# **Optical phase (comb-mode linewidth)**

In case of ASE quantum limit and uncorrelatead noise:

$$\Delta \nu_n = \Delta \nu_{\Delta \theta} + [2\pi \tau (\nu_n - \nu_c)]^2 \Delta \nu_{\Delta T}$$



Figure from J. Kim and Y. Song, Adv. In Opt. And Phot. 8 465-540, 2016



# **Elastic tape model**

**::** Influence of noise sources depends on fix frequency (of the perturbation) and on considered comb mode of interest



From N. R. Newbury and W. C. Swann, JOSA B 24 1756-1771, 2007

# **Elastic tape model – frequency dependance**

- **::** Frequency dependance is defined by the physics of the laser
  - Gain modulation bandwidth:
  - Loss modulation bandwidth:



From C.-C. Lee et al. Opt. Lett. 37, 3084-3086, 2012 and from J. Kim and Y. Song, Adv. In Opt. And Phot. 8 465-540, 2016



### **Elastic tape model**

| Noise Term                                                                      | Fixed Point $(v_{fix})$ | Frequency<br>Dependence                                          | Magnitude at $f=1$ Hz<br>$S_r(1)$ in Units of 1/Hz | Suppress by                                        |
|---------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Environmental $(length)^{a,b}$                                                  | 0-3 THz<br>(1 THz)      | $f^{-1}$                                                         | $10^{-22}$                                         | Environmental<br>isolation                         |
| Environmental<br>(loss or pump power)                                           | (200  THz)              | ${f(1+(f/f_{3 dB})^2)}^{-1}$<br>$f_{3 dB}=5-10 \text{ kHz}^c$    | 10 <sup>-21</sup>                                  | Environmental Isolation, reduce $f_{3 \text{ dB}}$ |
| Pump noise                                                                      | $\sim \nu_c$ (200 THz)  | $\{1 + (f/f_{3 dB})^2\}^{-1}$<br>$f_{3 dB} = 5 - 10 \text{ kHz}$ | $3 \times 10^{-24}$                                | Reduce pump RIN and cavity $f_{3 dB}$              |
| Intracavity ASE<br>(quantum limit)                                              | $\sim \nu_c$ (190 THz)  | $f^0$                                                            | $3	imes 10^{-25}$                                  | Reduce effective cavity loss                       |
| $\begin{array}{l} \text{Supercontinuum and} \\ \text{shot noise}^d \end{array}$ | $\mathbf{NA}^{c}$       | $f^2$                                                            | $6\!	imes\!10^{-23}$ to $6\!	imes\!10^{-24}$       | Higher peak<br>powers                              |
| Environmental<br>(external path length) <sup>e</sup>                            | $0-2\mathrm{THz}$       | f                                                                | 10 <sup>-32</sup>                                  | Minimize extra<br>path lengths                     |

# Table 1. Fixed Point, Frequency Dependence, and Magnitude of the Various Contributionsto the Frequency Noise on the Comb Lines

From N. R. Newbury and W. C. Swann, JOSA B 24 1756-1771, 2007



# **Comb-line frequency noise**

| Effect                   | Frequency noise Power Spectral Density (Hz <sup>2</sup> /Hz)                                                                      | Physical cause                               |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Quantum<br>noise<br>(QL) | $S_{\nu}^{\rm ST} = \frac{\Theta h \nu_c l_{\rm tot}}{8\pi^2 P_{\rm int}} \cdot f_{\rm rep}^2$                                    | Contribution of losses and gain to comb-line |
| ASE induced timing drift | $S_{\nu,n}^{\text{ASE}}(f) = S_{\nu}^{\text{ST}} + (\nu_n - \nu_c)^2 \cdot S_{f_{\text{rep}}}^{\text{ASE}}(f) / f_{\text{rep}}^2$ | For any comb line n                          |
| Pump RIN<br>induced*     | $S_{\nu,n}^{\text{Pump}} = (n - n_{\text{fix}}^{\text{Pump}})^2 S_{f_{\text{rep}}}^{\text{Pump}}$                                 |                                              |
| Length jitter<br>induced | $\nu_{\rm fix}^{\rm length} = \nu_c (1 - v_g^L / v_p^L)$                                                                          |                                              |

\*: 
$$\frac{df_{\text{ceo}}}{dP} = \frac{\beta_0}{2\pi} \left( \frac{df_{\text{rep}}}{dP} \right) + \frac{f_{\text{rep}}}{2\pi} \left( \frac{d\phi_0}{dP} \right) \& n_{\text{fix}}^{\text{Pump}} \equiv -(df_{\text{ceo}}/dP)/(df_{\text{rep}}/dP)$$
$$S_{f_{\text{rep}}}^{\text{ASE}}(f) = (2\pi f_{\text{rep}})^2 f^2 S_{\Delta T}^{\text{ASE}}(f)$$

From J. Kim and Y. Song, Adv. In Opt. And Phot. 8 465-540, 2016

# **Timing jitter**

| Effect                                  | Jitter Power Spectral Density (fs <sup>2</sup> /Hz)                                                                                                                               | Physical cause                                                                                                                                     |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Quantum<br>noise<br>(QL)                | $S_{\Delta t}^{QL}(f) = 0.5294 \frac{1}{(2\pi f)^2} \frac{h\nu_0}{E_p} \frac{g}{T_{rt}} \tau_p^2$                                                                                 | Contribution of losses and gain to timing jitter. Fundamental quantum limit, no dispersion is considered.                                          |
| Gordon-Haus<br>(G-H)                    | $S_{\Delta t}^{G-H}(f) = \left(\frac{D_2}{fT_{rt}}\right)^2 \frac{g}{T_{rt}\tau_p^2} \frac{0.21}{(2\pi f)^2 + \left(0.21\frac{g}{T_{rt}}\frac{1}{\tau_p^2\Delta f_g^2}\right)^2}$ | Pulse center optical frequency fluctuation<br>due to quantum noise coupled to intracavity<br>dispersion                                            |
| Kramers-<br>Kronig<br>(K-K)             | $S_{\Delta t}^{K-K}(f) = \left(\frac{1}{2\pi\Delta f_g}\right)^2 \left[1 + \left(\frac{E_p \Delta R}{2\pi f T_{rt}}\right)^2\right] S_l(f)$                                       | Coupling of variation of refractive index<br>through inversion level and pump power<br>fluctuations                                                |
| Self-<br>steepening<br>(S-S)            | $S_{\Delta t}^{S-S}(f) = \left(\frac{\Delta \varphi_{nl}}{2\pi^2 f T_{rt} \nu_0}\right)^2 S_I(f)$                                                                                 | Phase shift (timing jitter) caused by nonlinear refractive index (intensity dependant)                                                             |
| Slow-<br>saturable<br>absorber<br>(SSA) | $S_{\Delta t}^{SSA}(f) = \left(\frac{sd\Delta t/ds}{2\pi fT_{rt}}\right)^2 S_I(f)$                                                                                                | Temporal shift induced by the fact that the<br>leading part of the pulse is more attenuated<br>by the saturable absorber than the trailing<br>part |
| Total                                   | $S_{\Delta t}^{tot} = \sum_{i} S_{\Delta t}^{i}$                                                                                                                                  | i stands for the supra-indexes corresponding to all the physical effects above                                                                     |

Equations from R. Paschotta, Appl. Phys. B, 79 163-173, 2004

...

# Why DPSSL is low noise?



- Low gain Typically producing solitons
- Large pulse energy Typical repetition rates: 40 MHz 1 GHz

# Low quantum noise

# And fiber lasers?

- **::** Large number of different architectures
- Best performances obtained with nonlinear amplifying loop mirror (NALM) architecture thanks to instantaneous saturable absorber (Kerr lens like)



Compact and robust design

- **::** Limited pulse energy and relatively high intracavity losses
- **::** Timing jitter larger than solid-state lasers

Figure from J. Kim and Y. Song, Adv. In Opt. And Phot. 8 465-540, 2016

# **Optical pulse timing jitter and microwave phase noise**

| Single sideband phase noise                       | $L(f) = 10 \log(4\pi^2 f_c^2 S_{\Delta t}(f)), \ dBc/Hz$       |
|---------------------------------------------------|----------------------------------------------------------------|
| Shot noise associated single sideband phase noise | $L_{SN}(f) = 10 \log\left(\frac{q}{2 I_{av}}\right), \ dBc/Hz$ |



# **Timing jitter modelling**



#### Contributions au bruit

# **Timing jitter of DPSSL**

- :: Optical pulse train jitter of 100-MHz rep rate 1556 nm DPSSL
- Optical measurement (no optical-to-electrical conversion), 83 as (integrated from 10 kHz to 50 MHz)



#### Contributions au bruit

### **Investigation of extra-noise source**



# **Ultrapure microwave generation**



E. Portuondo-Campa et al., Opt. Express 23, 32441-32451 (2015)

# Stabilized 100MHz DPSSL comb



### Microwave phase noise and pulse timing jitter



### Ultralow noise 1GHz MLL based on monolithic design



T. D. Shoji et al., Optica 3, 995-998 (2016)



### **100MHz Kerr lens Titanium Sapphire pulse timing jitter**



A. J. Benedick et al., Nat. Phot. 6, 97-100 (2012)



#### Actuateurs pour asservissement

### **EOM in DPSSL**



Frequency Offset [kHz]

N. Torcheboeuf et al., Opt. Express 25, 2215-2220 (2017)



Copyright 2018 CSEM | Journée thématique sur le bruit et les lasers femtosecondes | SLe | Page 28

### **Power / CEO stabilization via gain control**



L. Karlen et al., Opt. Letters 41, 376-379 (2016)

# **Power / CEO stabilization via gain control**



L. Karlen et al., Opt. Letters 41, 376-379 (2016)



### **Optical actuation on SESAM**



S. Hakobyan et al., Opt. Letters 42, 4651-4654 (2017)

### **Optical actuation on SESAM**



S. Hakobyan et al., Opt. Letters 42, 4651-4654 (2017)

### Fiber laser with fast actuators

- **::** EOMs for frep and CEO control allow MHz range locking bandwidths
- **::** Efficient implementation in loss tolerant fiber lasers for tight locking



X. Xie et al., Nat. Phot. 11, 44-47 (2017)

- **::** fs modelocked lasers are exquisitely good oscillators
- **::** Fundamental and technical noise sources in such lasers are well known and understood
- **::** New laser designs are under development
- **::** Still room to push for improved laser performances via reducing noise sources and optimized stabilization
- **::** Better photonics-based microwave oscillators will be realized



**::** J. Kim and Y. Song, Adv. In Opt. And Phot. 8 465-540, 2016

**::** N. R. Newbury and W. C. Swann, JOSA B 24 1756-1771, 2007

**::** R. Paschotta, Appl. Phys. B, 79 163-173, 2004



# Thank you for your attention!

#### Follow us on



# www.csem.ch



## **BOC technique**



# **Ultrapure microwave generation**



### Augmentation du taux de répétition du train d'impulsion



E. Portuondo-Campa et al., Opt. Express 23, 32441-32451 (2015)

# **# CSem**

Copyright 2018 CSEM | Journée thématique sur le bruit et les lasers femtosecondes | SLe | Page 39

### **Photocourant et sa saturation**



E. Portuondo-Campa et al., Opt. Express 23, 32441-32451 (2015)



Copyright 2018 CSEM | Journée thématique sur le bruit et les lasers femtosecondes | SLe | Page 40

## **Cavité de référence**





### Fiber laser with fast actuators

- **::** EOMs for frep and CEO control allow MHz range locking bandwidths
- **::** Efficient implementation in loss tolerant fiber lasers for tight locking



X. Xie et al., Nat. Phot. 11, 44-47 (2017)

