

Workshop « Synchronisation de précision et réseaux »

Entanglement distribution in a fibered network with an AlGaAs chip

Othmane Meskine 02/10/24

Integrated quantum photonics

Emission, manipulation, and detection of photons in the quantum regime

Photon-pair sources

- Design
- Fabrication
- Experiments/theory
- Quantum Information protocols

I. AlGaAs-waveguide photon-pair source: working principle

II. Quantum communications: entanglement distribution

III. Open questions: clock synchronization

I. AlGaAs-waveguide photon-pair source: working principle

II. Quantum communications: entanglement distribution

III. Open questions: clock synchronization

AlGaAs platform

- ✓ Single emitters/ Parametric sources (SPDC, SFWM)
- ✓ Direct band-gap
- ✓ Strong electro-optics effect
- Possible integration with other material platforms (SOI, superconductors)

Spontaneous Parametric Down Conversion (SPDC)

AlGaAs Bragg reflector waveguides

- ✓ Strong second order nonlinearity
- ✓ Room temperature
- ✓ Telecom wavelength

Momentum conservation (Phase-matching) $\mathbf{k}_p = \mathbf{k}_i + \mathbf{k}_s$

Metrics

1.5

Quantum state

$$|\Psi\rangle = \iint d\omega_1 d\omega_2 \mathcal{C}(\omega_1, \omega_2) \hat{a}_H^{\dagger}(\omega_1) \hat{a}_V^{\dagger}(\omega_2) |vac\rangle$$

Joint Spectral Amplitude (JSA)

- \rightarrow Broadband (60-80 nm FWHM)
- \rightarrow Telecom C-Band (1530-1565 nm)

Polarization-entangled state

- Anticorrelated JSA

- Low birefringence
- \rightarrow Inherent polarization entanglement

I. AlGaAs-waveguide photon-pair source: working principle

II. Quantum communications: entanglement distribution

III. Open questions: clock synchronization

Entanglement-based quantum communication networks

Quantum networks enable the transmission of information in the form of qubits between physically distant nodes

Quantum entanglement \rightarrow Trusted-node free networks Interesting topology \rightarrow Polarization + energy time entangled photons

> Metropolitan fibered links(R. Ursin/J. Rarity groups, Vienna/Bristol) Joshi, S. et al, Science Advances, **6**, aba0959 (2020)

Exploiting broadband polarization entanglement....

- ✓ Large bandwidth
- ✓ Strong frequency anticorrelations
- ✓ Polarization entanglement

Without off-chip compensation, directly at the output

Collaboration with E. Diamanti (LIP6) and F. Boitier (Nokia Bell-Labs)

Secret key rate sharing between users pairs (BBM92)

Available bandwidth: 76 ITU 100 GHz channels (36 users pairs simultaneously)

Flexible bandwidth allocation

Optimizing the signal of each link following structural constraints (elastic network)

• Secret key sharing between users pairs (BBM92 protocol)

Available bandwidth: 76 ITU 100 GHz channels (36 users pairs simultaneously) Distances up to 75 km in fibered optical links (including finite key size effects)

Reconfigurable fully connected multiusers entanglement network

Networks of N users sharing an entangled state with the N-1 remaining users

Flexible bandwidth allocation

Quantum communications testbed in Paris region

Classical characterization

Measured losses: 3 - 3.5 dB (0.2-0.23 dB/km)

Polarization stability: 0.4% fluctuations over 12 hours

Paris subnetwork MPQ-LIP6

Quantum characterization:

Quantum characterization:

	At the chip output	After propagation
Coinc rate/s	41 <i>kHz</i>	2.6 <i>kHz</i>
CAR	110	1.7
Temporal width (ps)	800	129600

160-fold widening of the coincidence peak

Quantum characterization:

- 1. Chromatic dispersion: 20 ps²/km
- 2. Density matrix reconstruction (Quantum tomography)

	At the chip output	After propagation
Fidelity	97.5%	91.8%
Purity	96.6%	89.7%

Quantum characterization:

 $QBER \ge 1 - F$

- 1. Chromatic dispersion: 20 ps²/km
- 2. Density matrix reconstruction (Quantum tomography)
- 3. Simulation of QBER as a function of *F*

I. AlGaAs-waveguide photon-pair source: working principle

II. Quantum communications: entanglement distribution

III. Open questions: clock synchronization

Next step:

Alice (LIP6)

Synchronization

- Define a time zero
- Maintain the same clock rate on both systems

Clock synchronization

Ínía Ruamum

Clock synchronization with correlated photons

Y. Pelet et al, PRA 20, 044006 (2023)

Active tracking of the central peak

Constraints on processing time:

 \Rightarrow limits the SKR (secure key rate)

Clock synchronization with a classical reference

Y. Chen et al, Nature 589, 214-219 (2021)

Use a dedicated channel for the synchronized clock signal between Alice and Bob

 \Rightarrow Exploiting the Refimeve fiber linking our lab to Jussieu

Acknowledgments

Permanent staff

S. Ducci F. Baboux M.I. Amanti M. Ravaro

PhD students & Postdoc

Fundings:

Reconfigurable fully connected multiusers entanglement network

Networks of N users sharing an entangled state with the N-1 remaining users

 \rightarrow n° of two-user links needed: N(N - 1)/2

Demultiplexing of the generated signal in N(N -1) frequency channels

Recombine those channels into optical fibers, one for each user

WSS

Entanglement-based quantum key distribution (QKD)

 \rightarrow Entanglement guarantees the security of the key

 \rightarrow No need for trusted source or relay nodes

Reconfigurable fully connected multiusers entanglement network

