Intro to CERN White Rabbit Community WR Collaboration Plans

The White Rabbit Collaboration in a nutshell

Projects! Some examples:

- Ongoing: collaboration with GMV and IQD on hold-over.
- Quantum: see e.g. CERN's Quantum Tech Initiative at https://quantum.cern
- Under discussion: robust, long-distance WR for smart grids

An experiment in public-private partnerships

Getting the best of both worlds

- Dissemination according to our Open Science mandate
- Impact and sustainability

Economics

- Companies can add value of top of WR and monetise products based on those developments
- They decide what they contribute as open source and what they keep proprietary

WRC members in 2024

Intro to CERN White Rabbit Community WR Collaboration

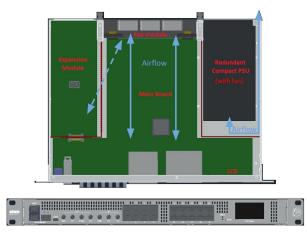
White Rabbit Collaboration

Join us! For more details, see https://www.white-rabbit.tech

Plans

Intro to CERN	White Rabbit	Community 000	WR Collaboration	Plans ●○○○○○○
Outline				

- Introduction to CERN
- 2 White Rabbit
- 3 Community
- 4 The White Rabbit Collaboration


Plans

WR Switch v4

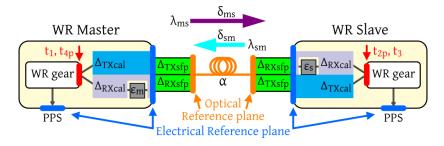
- GbE and 10GbE support
- Redundant and serviceable fans and power supplies
- Based on Xilinx/AMD Zynq UltraScale+ System-on-Chip (SoC)
- Expansion board slot for enhancements (low phase noise, hold-over...)

See https://ohwr.org/project/wr-switch-hw-v4/wikis for more details.

Intro to CERN	White Rabbit	Community 000	WR Collaboration	Plans ○0●0000
WR Switc	h v4			

Prototyping stage, v3 functionality before the end of the year.

Community


WR Switch v4

Javier Serrano | CERN BE-CEM-EDL The White Rabbit Collaboration

Intro to CERN	White Rabbit	Community 000	WR Collaboration	Plans ○○○○●○○
<u> </u>	 			

Courtesy Henk Peek and Peter Jansweijer

Standardisation++ (P. Jansweijer, M. Lipiński)

Amendments to IEEE 1588-2019

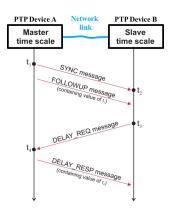
- Absolute calibration
- In-situ calibration of asymmetry

Within the SNIA SFF working group

Storage of calibration parameters in SFP EEPROM

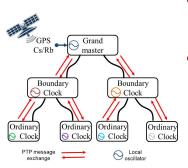
Intro to CERN	White Rabbit	Community 000	WR Collaboration	Plans ○○○○○○●

Possibilities for collaboration: non-exhaustive list

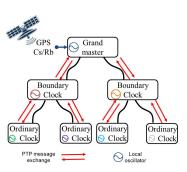

- Telecom: support for G.8275.1 PTP profile, higher rate for PTP frames, improvements in BMCA, ESMC support, live reconfiguration... See presentation of Marek Brawański at the 13th WR Workshop.
- Quantum: both QKD and entangled qubits
- Monitoring and logging of important parameters and events with time stamps
- Automation of calibration of port delays and fibre asymmetry
- Robustness: hardware and system-wide (clock ensemble). Redundancy and seamless switch-over (<1ns jump)
- Best practices for long-distance WR, in combination or not with weak signals for quantum networking
- Testing and qualification laboratory
- Other?

Backup slides

Backup slides

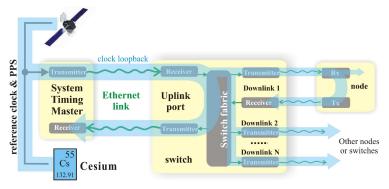

Javier Serrano | CERN BE-CEM-EDL The White Rabbit Collaboration

Precision Time Protocol (IEEE 1588)

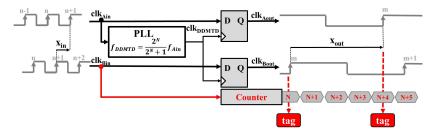

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$

Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$
- Hierarchical network

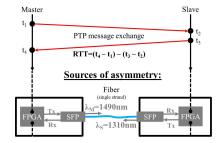

Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $O\overline{FM} = t_2 (t_1 + \delta_{ms})$
- Hierarchical network
- Shortcomings of traditional PTP:
 - devices have free-running oscillators
 - frequency drift compensation traffic can compromise determinism of other messages
 - assumes symmetry of medium
 - resolution of timestamps

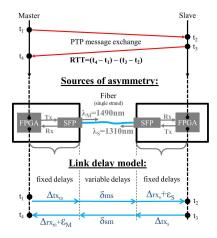

Layer 1 Syntonisation

- Clock is encoded in the Ethernet carrier and recovered by the receiver chip
- All network devices use the same physical layer clock
- Clock loopback allows phase detection to enhance precision of timestamps

Digital Dual Mixer Time Difference (DDMTD)


- Precise phase measurements in FPGA
- WR parameters:
 - clk_{in} = 62.5 MHz
 - *clk_{DDMTD}* = 62.496185 MHz (N=14)
 - *clk_{out}* = 3.814 kHz
- Theoretical resolution of 0.977 ps

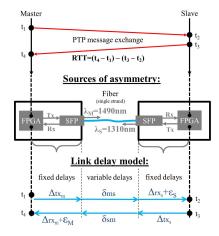
 Correction of Round Trip Time (RTT) for asymmetries



- Correction of Round Trip Time (RTT) for asymmetries
- Asymmetry sources: FPGA, PCB, electrical/optical conversion, chromatic dispersion

- Correction of Round Trip Time (RTT) for asymmetries
- Asymmetry sources: FPGA, PCB, electrical/optical conversion, chromatic dispersion
- Link delay model:
 - Fixed delays calibrated/measured
 - Variable delays evaluated online with:

$$\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - 1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$

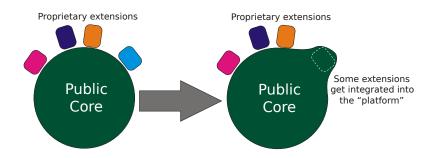


- Correction of Round Trip Time (RTT) for asymmetries
- Asymmetry sources: FPGA, PCB, electrical/optical conversion, chromatic dispersion
- Link delay model:
 - Fixed delays calibrated/measured
 - Variable delays evaluated online with:

$$\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - 1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$

Accurate offset from master (OFM):


$$\begin{split} \delta_{ms} &= \frac{1+\alpha}{2+\alpha} \left(RTT - \sum \Delta - \sum \epsilon \right) \\ OFM &= t_2 - \left(t_1 + \delta_{ms} + \Delta_{txm} + \Delta_{rxs} + \epsilon_S \right) \end{split}$$


WR and open source

	Commercial	Non-commercial	
Open	Winning combination. Best of both worlds.	Whole support burden falls on developers. Not scalable.	
Proprietary	Vendor lock-in.	Dedicated non-reusable projects.	

Public-private partnerships

Public-private partnerships

