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LLASER STABILISATION

OPTICAL ATOMIC CLOCK: lock a laser on a narrow atomic resonance
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Atomic resonance line-width ~ 1 Hz = requires a laser line-width < 1 Hz

J. Lodewyck — Cavity-stabilized lasersAG First-TF 2015 4/18



LLASER STABILISATION

OPTICAL ATOMIC CLOCK: lock a laser on a narrow atomic resonance

( A

( ) [

| J

Atomic resonance line-width ~ 1 Hz = requires a laser line-width < 1 Hz
Solution : stabilize the laser on an optical resonator (Fabry-Perot cavity)

J. Lodewyck — Cavity-stabilized lasersAG First-TF 2015 4/18



LLASER STABILISATION

OPTICAL ATOMIC CLOCK: lock a laser on a narrow atomic resonance

( A

( ) [

| J

Atomic resonance line-width ~ 1 Hz = requires a laser line-width < 1 Hz
Solution : stabilize the laser on an optical resonator (Fabry-Perot cavity)
CHALLENGES
Lock the laser on the top of the resonance
Cavity line-width = 1 to 10 kHz = pin-point at 10~°

J. Lodewyck — Cavity-stabilized lasersAG First-TF 2015 4/18



LLASER STABILISATION

OPTICAL ATOMIC CLOCK: lock a laser on a narrow atomic resonance
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Atomic resonance line-width ~ 1 Hz = requires a laser line-width < 1 Hz
Solution : stabilize the laser on an optical resonator (Fabry-Perot cavity)
CHALLENGES
Lock the laser on the top of the resonance
Cavity line-width = 1 to 10 kHz = pin-point at 10~°
When done, the laser follows the fluctuation of the cavity 6L
ov 6L

v L
L=10to50cm = /L ~ 0.1 fm
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CHALLENGE 1: LOCK THE LASER ON THE CAVITY
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CHALLENGE 1: LOCK THE LASER ON THE CAVITY
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LOoCK TECHNIQUE: Pound Drever Hall
m Phase modulate the input laser beamer
m Measure the phase shift of the reflected beam
by beating with the modulation sidebands

phase int.
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LOCK TECHNIQUE: Pound Drever Hall
m Phase modulate the input laser beamer
m Measure the phase shift of the reflected beam

by beating with the modulation sidebands
NOISE SOURCES:

phase int.

m Electronic noise
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CHALLENGE 1: LOCK THE LASER ON THE CAVITY

m@@ )

LOCK TECHNIQUE: Pound Drever Hall
m Phase modulate the input laser beamer
m Measure the phase shift of the reflected beam

by beating with the modulation sidebands
NOISE SOURCES:

phase int.

m Electronic noise

m Photon shot noise

m Residual amplitude modulation
CONCLUSION:

m Narrow resonance helps = high finesse and long cavity
m Quality of the lock usually not a limiting factor
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CHALLENGE 2: REDUCE LENGTH FLUCTUATION OF
THE CAVITY

Aim: reduce length fluctuations of the cavity to /L ~ 0.1 fm

SOURCES OF LENGTH FLUCTUATIONS
m Temperature fluctuations
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CHALLENGE 2: REDUCE LENGTH FLUCTUATION OF
THE CAVITY

Aim: reduce length fluctuations of the cavity to /L ~ 0.1 fm

SOURCES OF LENGTH FLUCTUATIONS
m Temperature fluctuations

Thermal expansion

SOLUTIONS 0
m Thermal shields g_::
(100x damping per shield) g

m Spacer made of ULE A B
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CHALLENGE 2: REDUCE LENGTH FLUCTUATION OF
THE CAVITY

Aim: reduce length fluctuations of the cavity to /L ~ 0.1 fm

SOURCES OF LENGTH FLUCTUATIONS
m Temperature fluctuations

SOLUTIONS Fs,,m umw, ULBrmg

m Thermal shields
(100x damping per shield)

m Spacer made of ULE

T0% 2.0 3.13 4,18 5.2 (o)

m ULE rings on silica mirrors

T. Legero, JOSA B 27 914 (2010)
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CHALLENGE 2: REDUCE LENGTH FLUCTUATION OF
THE CAVITY

Aim: reduce length fluctuations of the cavity to /L ~ 0.1 fm

SOURCES OF LENGTH FLUCTUATIONS

m Temperature fluctuations
m Mechanical vibrations
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CHALLENGE 2: REDUCE LENGTH FLUCTUATION OF
THE CAVITY
Aim: reduce length fluctuations of the cavity to /L ~ 0.1 fm

SOURCES OF LENGTH FLUCTUATIONS

m Temperature fluctuations
m Mechanical vibrations
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m Vibration insensitive design
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J. Millo, Phys. Rev. A 79 053829 (2009)
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CHALLENGE 2: REDUCE LENGTH FLUCTUATION OF
THE CAVITY

Aim: reduce length fluctuations of the cavity to /L ~ 0.1 fm

SOURCES OF LENGTH FLUCTUATIONS

m Temperature fluctuations
m Mechanical vibrations

SOLUTIONS
m Vibration insensitive design

m Anti-vibration tables
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CHALLENGE 2: REDUCE LENGTH FLUCTUATION OF
THE CAVITY

Aim: reduce length fluctuations of the cavity to /L ~ 0.1 fm

SOURCES OF LENGTH FLUCTUATIONS

m Temperature fluctuations
m Mechanical vibrations
m Air pressure

SOLUTIONS

= Vacuum operation P < 108 mbar
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THERMAL NOISE — IN DEPTH

SPECTRAL POINT OF VIEW

m Excitation of mechanical vibration modes
of the cavity by thermal agitation

m Reduced when the resonances are sharper
<> high mechanical quality factor
< low loss material

m Difficult to apply in practice

A

Alog H

Better Q

“T"Region of interest >

log w
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THERMAL NOISE — IN DEPTH

SPECTRAL POINT OF VIEW

A
m Excitation of mechanical vibration modes e
of the cavity by thermal agitation
m Reduced when the resonances are sharper i O
<> high mechanical quality factor
< low loss material U ,

log w

m Difficult to apply in practice
FLUCTUATION-DISSIPATION POINT OF VIEW

m Mechanical strain energy + mechanical loss
= Energy dissipation = Fluctuation

m Easily modeled with FEM
m = Coating > Mirror > Spacer

r (mm)

T. Legero, JOSA B 29 178 (2012)
K. Numata, Phys. Rev. Lett. 93, 250602 (2004)
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At SYRTE - 2010

Hg clock laser

Inner vacuum
chamber

BK7 windows

Gold coated shields ©

ULE spacer, 10 cm long and fused silica mirrors

Design: horizontal (Sr, 1.5 1) and vertical (Hg)

Thermal noise floor around 5 x 10716,

Not at inversion of CTE = 3 layers of thermal shielding

(short term temperature fluctuations in the nK range, 7 = 4 days)
Residual drift up to a few 100 mHz/s (feed formard compensation below 1mHz/s)
Long term drift 56 mHz/s
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AT SYRTE — SPECTROSCOPY OF THE ATOMS

Single scan of the

mg = 9/2 — mg = 9/2 transition
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m Contrast close to 90%
m Fourier limited at 3.2 Hz
m Q=13x10%
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AT SYRTE — SPECTROSCOPY OF THE ATOMS

mg =9/2 — mp = 9/2 transition
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m Up to a few second: stability of
the Sr clock (1071%/,/7)

m Thermal flicker noise floor at
6 x 10715

m Polynomial long term removed
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AT SYRTE — MOVABLE/TRANSPORTABLE CAVITIES

US‘ SOC2 cavity

m 1.55 pm movable cavity m Cavity for the SOC2 strontium
m Design by SODERN for CNES clock laser

m 10 cm long m 10 cm long

m Reference for frequency combs m 8 kg total weight
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REVIEW OF BEST REPORTED STABILITIES — NIST

NIST, YTTERBIUM OPTICAL LATTICE CLOCK

m ULE spacer, fused silica mirrors, 29 cm

m Thermal noise at 2 x 10710 (bor. 10.1038/nphoton.2010.313 2011)

m Comparison Yb vs Yb a 3 x 10_16/\/F (DO 10.1126/science. 1240420 2014)

/7

o e Foedack K %
ipadl )

. \)
T ‘\\
j=asat «© . Optical-lattice

v v -l i trapped atoms
4NN | ¥5780m A :
laser 1 Feedback |

N

J. Lodewyck — Cavity-stabilized lasersAG First-TF 2015 12/18



REVIEW OF BEST REPORTED STABILITIES — JILA

JILA, STRONTIUM OPTICAL LATTICE CLOCK

m ULE spacer, fused silica mirrors, 40 cm
m Thermal noise at 1.2 X 10710 (phys. Rev. Lett. 109, 230801 (2012))

m Comparaison Sr vs Sr a 2.2 x 10_16/\/F (Nicholson, arXiv 12/2014)
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REVIEW OF BEST REPORTED STABILITIES — PTB

PTB/JILA, SILICON CAVITY UNDER LIQUID NITROGEN

m Silicon spacer and mirrors
m Thermal noise at 7 x 10~/

(DOI 10.1038/nphoton.2012.217)

m Low long term drift at 0.1 mHz/s (por: 10.1364/0L 39.005102)
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REVIEW OF BEST REPORTED STABILITIES — PTB

PTB/JILA, SILICON CAVITY UNDER LIQUID NITROGEN

m Silicon spacer and mirrors
m Thermal noise at 7 x 1017 (DOI 10.1038/nphoton.2012.217)
m Low long term drift at 0.1 mHz/s (por: 10.1364/0L 39.005102)

PTB, STRONTIUM OPTICAL LATTICE CLOCK

m ULE spacer, fused silica mirrors, 48 cm

m Thermal noise at 8.7 X 10717 (axiv 1502.02608)
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CAVITES CRYOGENIQUES AVEC COATINGS CRISTALLINS
m PTB
m JILA

AlGaAs
epitaxial
multilayer

k4
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PROJETS EN COURS

CAVITES CRYOGENIQUES AVEC COATINGS CRISTALLINS
m PTB
m JILA

AlGaAs
epitaxial
multilayer

super- bonded
polished mirror

silica assembly
—
—

y

CAVITES SILICIUM CRYOGENIQUES AVEC CRYO-COOLER
m Femto-ST (Yann Kersalé, Jacques Millo)
m RIKEN (Katori)
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CONCEPTION

m 40 cm long cavity

m 5 optical accesses 2x 1.55 um,
1x 1.062 pm; 1x 698 nm
Central hole: crystalline
coatings at 1.55 um

m 2 silver-coated thermal shields

FuNDING

m Refimeve+

m First-TF
STATUS

m Under assembly

m Expected thermal noise floor in
the 10717 range
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SENSIBILITE ACCELEROMETRIQUE
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SENSIBILITE ACCELEROMETRIQUE

m Sensitivity < 10711 /(m/s?) on the lateral holes
= precision of ~ 10 um on the supporting points

m Tuning weights placed on the cavity for fine tuning

m Possible to reject vibration on the central hole from the signal of the
lateral holes
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