CAVITY-STABILIZED LASERS AG FIRST-TF 2015

Jérôme Lodewyck

16 mars 2015

Systèmes de Référence Temps-Espace

1 PRINCIPLES

2 State-of-the-art

3 Projet First-TF : Long Cavity

1 PRINCIPLES

2 STATE-OF-THE-ART

3 PROJET FIRST-TF : LONG CAVITY

J. Lodewyck — Cavity-stabilized lasersAG First-TF 2015

OPTICAL ATOMIC CLOCK: lock a laser on a narrow atomic resonance

Atomic resonance line-width $\simeq 1~\text{Hz} \Rightarrow$ requires a laser line-width $\ll 1~\text{Hz}$

OPTICAL ATOMIC CLOCK: lock a laser on a narrow atomic resonance

Atomic resonance line-width $\simeq 1 \text{ Hz} \Rightarrow$ requires a laser line-width $\ll 1 \text{ Hz}$ Solution : stabilize the laser on an optical resonator (Fabry-Perot cavity)

OPTICAL ATOMIC CLOCK: lock a laser on a narrow atomic resonance

Atomic resonance line-width $\simeq 1 \text{ Hz} \Rightarrow$ requires a laser line-width $\ll 1 \text{ Hz}$ Solution : stabilize the laser on an optical resonator (Fabry-Perot cavity) CHALLENGES

1 Lock the laser on the top of the resonance

Cavity line-width = 1 to 10 kHz \Rightarrow pin-point at 10⁻⁵

OPTICAL ATOMIC CLOCK: lock a laser on a narrow atomic resonance

Atomic resonance line-width $\simeq 1 \text{ Hz} \Rightarrow$ requires a laser line-width $\ll 1 \text{ Hz}$ Solution : stabilize the laser on an optical resonator (Fabry-Perot cavity) CHALLENGES

1 Lock the laser on the top of the resonance

Cavity line-width = 1 to 10 kHz \Rightarrow pin-point at 10⁻⁵

2 When done, the laser follows the fluctuation of the cavity δL

$$\frac{\delta\nu}{\nu} = \frac{\delta L}{L}$$

L = 10 to 50 cm $\Rightarrow \delta L \simeq 0.1$ fm

J. Lodewyck — Cavity-stabilized lasersAG First-TF 2015

LOCK TECHNIQUE: Pound Drever Hall

- Phase modulate the input laser beamer
- Measure the phase shift of the reflected beam by beating with the modulation sidebands

LOCK TECHNIQUE: Pound Drever Hall

- Phase modulate the input laser beamer
- Measure the phase shift of the reflected beam by beating with the modulation sidebands

NOISE SOURCES:

- Electronic noise
- Photon shot noise
- Residual amplitude modulation

LOCK TECHNIQUE: Pound Drever Hall

- Phase modulate the input laser beamer
- Measure the phase shift of the reflected beam by beating with the modulation sidebands

NOISE SOURCES:

- Electronic noise
- Photon shot noise
- Residual amplitude modulation

CONCLUSION:

- Narrow resonance helps ⇒ high finesse and long cavity
- Quality of the lock usually not a limiting factor

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

- Sources of length fluctuations
 - Temperature fluctuations

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

Temperature fluctuations

Solutions

 Thermal shields (100x damping per shield)

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

Temperature fluctuations

Solutions

- Thermal shields (100x damping per shield)
- Spacer made of ULE

Thermal expansion

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

Temperature fluctuations

Solutions

- Thermal shields (100x damping per shield)
- Spacer made of ULE
- ULE rings on silica mirrors

T. Legero, JOSA B 27 914 (2010)

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

- Temperature fluctuations
- Mechanical vibrations

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

- Temperature fluctuations
- Mechanical vibrations

Solutions

Vibration insensitive design

J. Millo, Phys. Rev. A 79 053829 (2009)

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

- Temperature fluctuations
- Mechanical vibrations

Solutions

- Vibration insensitive design
- Anti-vibration tables

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

- Temperature fluctuations
- Mechanical vibrations
- Air pressure

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

- Temperature fluctuations
- Mechanical vibrations
- Air pressure

Solutions

• Vacuum operation $P < 10^{-8}$ mbar

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

- Temperature fluctuations
- Mechanical vibrations
- Air pressure
- Thermal noise: Brownian motion of the cavity

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

- Temperature fluctuations
- Mechanical vibrations
- Air pressure
- Thermal noise: Brownian motion of the cavity

Solutions

Long cavity

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

- Temperature fluctuations
- Mechanical vibrations
- Air pressure
- Thermal noise: Brownian motion of the cavity
- Solutions
 - Long cavity
 - Low mechanical loss materials
 - \Leftrightarrow pure materials
 - (Fused silica, crystalline solids)

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

- Temperature fluctuations
- Mechanical vibrations
- Air pressure
- Thermal noise: Brownian motion of the cavity
- Solutions
 - Long cavity
 - Low mechanical loss materials
 - \Leftrightarrow pure materials
 - (Fused silica, crystalline solids)

Large laser spot

Aim: reduce length fluctuations of the cavity to $\delta L \simeq 0.1$ fm

Sources of length fluctuations

- Temperature fluctuations
- Mechanical vibrations
- Air pressure
- Thermal noise: Brownian motion of the cavity
- Solutions
 - Long cavity
 - Low mechanical loss materials
 - \Leftrightarrow pure materials
 - (Fused silica, crystalline solids)
 - Large laser spot

Dominant contribution to the laser noise

Thermal noise – in depth

Spectral point of view

- Excitation of mechanical vibration modes of the cavity by thermal agitation
- Reduced when the resonances are sharper
 ⇔ high mechanical quality factor
 ⇔ low loss material
- Difficult to apply in practice

Thermal noise – in depth

Spectral point of view

- Excitation of mechanical vibration modes of the cavity by thermal agitation
- Reduced when the resonances are sharper
 ⇔ high mechanical quality factor
 ⇔ low loss material
- Difficult to apply in practice

FLUCTUATION-DISSIPATION POINT OF VIEW

- Mechanical strain energy + mechanical loss
 ⇒ Energy dissipation ⇒ Fluctuation
- Easily modeled with FEM
- $\blacksquare \Rightarrow \mathsf{Coating} \gg \mathsf{Mirror} \gg \mathsf{Spacer}$

K. Numata, Phys. Rev. Lett. 93, 250602 (2004)

T. Legero, JOSA B 29 178 (2012)

1 PRINCIPLES

2 State-of-the-art

3 PROJET FIRST-TF : LONG CAVITY

J. Lodewyck — Cavity-stabilized lasersAG First-TF 2015

AT SYRTE - 2010

Hg clock laser

- ULE spacer, 10 cm long and fused silica mirrors
- Design: horizontal (Sr, 1.5 μ) and vertical (Hg)
- Thermal noise floor around 5×10^{-16} .
- Not at inversion of CTE \Rightarrow 3 layers of thermal shielding (short term temperature fluctuations in the nK range, $\tau =$ 4 days)
- Residual drift up to a few 100 mHz/s (feed formard compensation below 1 mHz/s)
- Long term drift 56 mHz/s

AT SYRTE – SPECTROSCOPY OF THE ATOMS

- Contrast close to 90%
- Fourier limited at 3.2 Hz
- $Q = 1.3 \times 10^{14}$

AT SYRTE – SPECTROSCOPY OF THE ATOMS

- Contrast close to 90%
- Fourier limited at 3.2 Hz
- $Q = 1.3 \times 10^{14}$

Frequency stability Sr atoms vs. cavity

- Up to a few second: stability of the Sr clock $(10^{-15}/\sqrt{\tau})$
- Thermal flicker noise floor at 6×10^{-15}
- Polynomial long term removed

AT SYRTE - MOVABLE/TRANSPORTABLE CAVITIES

SOC2 cavity

- 1.55 μ m movable cavity
- Design by SODERN for CNES
- 10 cm long
- Reference for frequency combs

- Cavity for the SOC2 strontium clock laser
- 10 cm long
- 8 kg total weight

Review of best reported stabilities – NIST

NIST, YTTERBIUM OPTICAL LATTICE CLOCK

- ULE spacer, fused silica mirrors, 29 cm
- Thermal noise at 2×10^{-16} (DOI: 10.1038/nphoton.2010.313 2011)
- Comparison Yb vs Yb à 3 \times 10 $^{-16}/\sqrt{\tau}$ (DOI: 10.1126/science.1240420 2014)

JILA, STRONTIUM OPTICAL LATTICE CLOCK

- ULE spacer, fused silica mirrors, 40 cm
- Thermal noise at 1.2×10^{-16} (Phys. Rev. Lett. 109, 230801 (2012))
- \blacksquare Comparaison Sr vs Sr à $2.2\times10^{-16}/\sqrt{\tau}$ (Nicholson, arXiv 12/2014)

Review of best reported stabilities – PTB

PTB/JILA, SILICON CAVITY UNDER LIQUID NITROGEN

- Silicon spacer and mirrors
- Thermal noise at 7×10^{-17} (DOI 10.1038/nphoton.2012.217)
- Low long term drift at 0.1 mHz/s (DOI: 10.1364/OL.39.005102)

Review of best reported stabilities – PTB

PTB/JILA, SILICON CAVITY UNDER LIQUID NITROGEN

- Silicon spacer and mirrors
- Thermal noise at 7×10^{-17} (DOI 10.1038/nphoton.2012.217)
- Low long term drift at 0.1 mHz/s (DOI: 10.1364/OL.39.005102)

PTB, STRONTIUM OPTICAL LATTICE CLOCK

- ULE spacer, fused silica mirrors, 48 cm
- \blacksquare Thermal noise at 8.7 \times 10^{-17} $_{(arXiv\,1502.02608)}$

PROJETS EN COURS

CAVITÉS CRYOGÉNIQUES AVEC COATINGS CRISTALLINS PTB JILA

PROJETS EN COURS

CAVITÉS CRYOGÉNIQUES AVEC COATINGS CRISTALLINS PTB JILA

CAVITÉS SILICIUM CRYOGÉNIQUES AVEC CRYO-COOLER

- Femto-ST (Yann Kersalé, Jacques Millo)
- RIKEN (Katori)

1 PRINCIPLES

2 STATE-OF-THE-ART

3 Projet First-TF : Long Cavity

J. Lodewyck — Cavity-stabilized lasersAG First-TF 2015

CONCEPTION

40 cm long cavity

- 5 optical accesses 2x 1.55 μm, 1x 1.062 μm; 1x 698 nm Central hole: crystalline coatings at 1.55 μm
- 2 silver-coated thermal shields

Funding

- Refimeve+
- First-TF

STATUS

- Under assembly
- Expected thermal noise floor in the 10⁻¹⁷ range

SENSIBILITÉ ACCELÉROMÉTRIQUE

18/18

Sensibilité accelérométrique

z X

- Sensitivity $< 10^{-11} / (m/s^2)$ on the lateral holes \Rightarrow precision of $\sim 10 \ \mu$ m on the supporting points
- Tuning weights placed on the cavity for fine tuning
- Possible to reject vibration on the central hole from the signal of the lateral holes