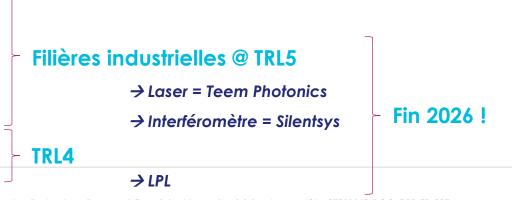


BRIOCHE

Vincent Crozatier, Thales R&T

Workshop First TF Rennes 09/10/2025

www.thalesgroup.com


BRIOCHE = BRiques technologiques pour l'Interrogation Optique Cohérente de Haute rEsolution

- > Astrid Maturation, poursuite de la thèse CIFRE DGA/AID Guillaume Arpison
- « Nouvelle stratégie de mesure d'ondes acoustiques par capteur à fibre optique distribué »
- Collaboration Thales (Arnaud Peigné, Vincent Kemlin) / LIPhy Grenoble (Eric Lacot)
- > Problématique : comment mesurer une onde acoustique avec un capteur à fibre optique distribué (DAS) ?
- Échantillonnage temporel/spatial: >10 kHz / <10 cm</p>
- Grande longueur de fibre : >>1 km
- Problématiques similaires en LiDAR (profilométrie)

OFDR (optical frequency domain reflectometry)

> Objectif principal : montée en maturité de 3 briques technologiques

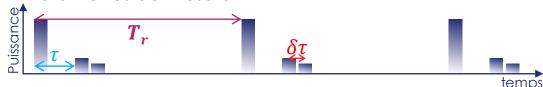
- Source laser agile en fréquence
 - Balayages en fréquence : >1 GHz en <100 µs
 - Haute pureté spectrale
- Système interférométrique de calibration compact
 - Correction des non-linéarités résiduelles des chirps < 10-4
- Référence optique ultra-stable transportable
 - Métrologie et stabilité long terme

> Optical Time Domain Reflectometry (OTDR)

Paramètres de mesure

- Position $z = \frac{c}{2n}\tau$ \rightarrow codage position / temps de vol
- Taux de rafraichissement $f = \frac{1}{T_r}$
- Distance d'ambiguïté $ZA = \frac{c}{2n} T_r$
- Résolution $\delta z = \frac{c}{2n} \frac{\delta \tau}{}$
- Contraintes sur la source laser (<u>impulsionnelle</u>)
 - Taux rafraichissement
- > 10 kHz
- → Cadence de tir
- Distance d'ambiguïté
 - → Cadence de tir
- Résolution

- <10 cm
- → Duree d'impulsion
- < 0.5 ns


dispersion, non-linéarités, bande passante de détection...

temps

> Optical Time Domain Reflectometry (OTDR)

Paramètres de mesure

- Position $z = \frac{c}{2n}\tau$ \rightarrow codage position / temps de vol
- Taux de rafraichissement $f = \frac{1}{T_r}$
- Distance d'ambiguïté $ZA = \frac{c}{2n} T_r$
- Résolution $\delta z = \frac{c}{2n} \delta \tau$
- Contraintes sur la source laser (<u>impulsionnelle</u>)
 - Taux rafraichissement
- > 10 kHz
- → Cadence de tir
- Distance d'ambiguïté
 - -> Cadence de tir / cohérence du laser
- Résolution

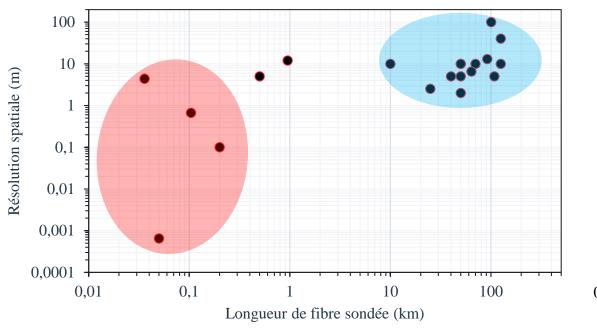
<10 cm

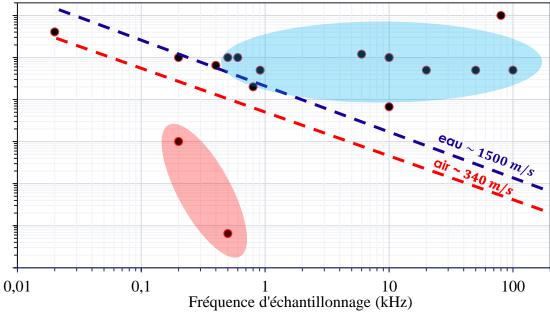
Duree d'impulsion

< 0.5 ns

dispersion, non-linéarités, bande passante de détection...

> Optical Frequency Domain Reflectometry (OFDR)

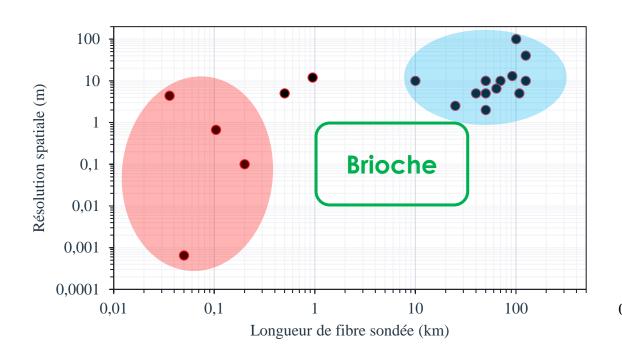


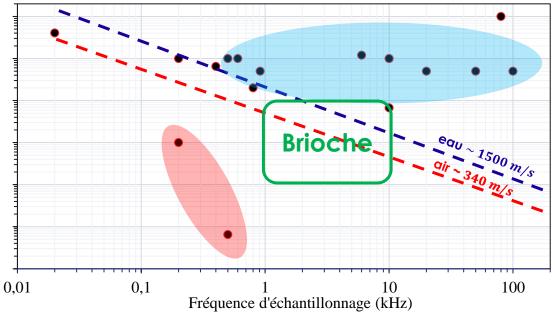

- Position $z = \frac{c}{2n\gamma} f_b$ \rightarrow codage position / fréquence
- Taux de rafraichissement $f = \frac{1}{T_r}$
- Distance d'ambiguïté $ZA = \frac{c}{2n\gamma} \Delta f = \frac{c}{2n} T_r$
- Résolution $\delta z = \frac{c}{2n} \cdot \frac{1}{\Delta f}$ (hors fenêtrage)
- Contraintes sur la source laser (continue)
 - Taux rafraichissement
- > 10 kHz
- → Cadence du chirp

Taux de chirp: $v > 10^{13} \text{ Hz/s}$

- Distance d'ambiguïté
 - → Cadence de tir / cohérence du laser
- Résolution

- <10 cm
- → Amplitude du chirp > 1 GHz


OTDR


- Longues distances (>10 km)
- Faibles résolutions spatiales (>1 m)
- Fréquence d'échantillonnage élevée (>1 kHz)

OFDR

- Courtes distances (< 500 m)
- Hautes résolutions spatiales (<< 1 m)
- Faible fréquence d'échantillonnage (< 1 kHz)

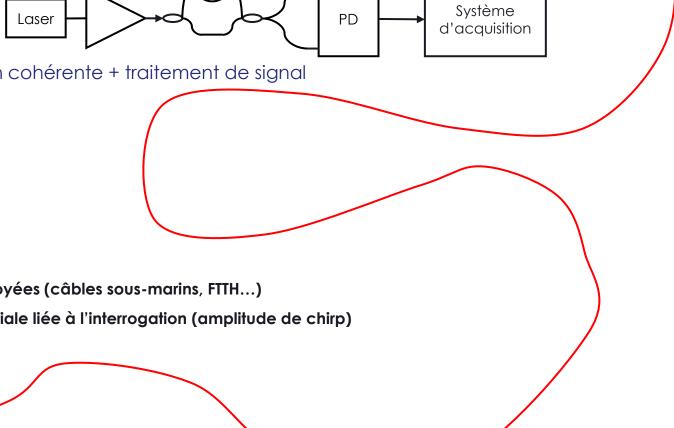
OTDR

- Longues distances (>10 km)
- Faibles résolutions spatiales (>1 m)
- Fréquence d'échantillonnage élevée (>1 kHz)

OFDR à la mode de BRIOCHE

- Longues distances (>10 km)
- Hautes résolutions spatiales (< 1 m)
- Fréquence d'échantillonnage élevée (>1 kHz)

Mesure DAS OFDR « typique »


> Architecture

|||||||||||

- Laser accordable
- Signal d'intérêt = phase ∝ étirement local
- Interféromètre autour de la fibre « capteur » + détection cohérente + traitement de signal

> Mesure acoustique : rétrodiffusion Rayleigh

- Pas de décalage en longueur d'onde
 - Détection cohérente
- Intrinsèque à la fibre
 - Pas besoin d'instrumenter la fibre utilisation de fibres déployées (câbles sous-marins, FTTH...)
 - Capteurs « virtuels » tout au long de la fibre → résolution spatiale liée à l'interrogation (amplitude de chirp)
- Rétrodiffusion
 - Faible coefficient: -73 dB/m
 - « Fading »

GBF

Laser acordable?

> Besoins

- λ = 1550 nm : compatibilité de réseaux télécom
- Chirp > GHz en < 1ms (idéalement 10 GHz en 100 µs) + faible bruit de phase

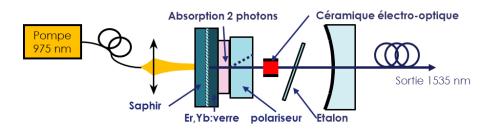
> Laser CW + modulateur externe + AWG RF

- Très faible bruit (parex DFB fibre), linéarité « parfaite »
- Montage optique complexe, perfes, AWG RF \$\$\$

> Laser accordable?

- [1] Crozatier et al., Appl. Phys. Lett. 89, 261115 (2006)
- [2] Siddarth et al., Nat. Photon. 19, p.709 (2025)
- [3] Lihachev et al., Nat. Commun. 13, 3522 (2022)

→ Y en a pas!


	Type de laser	Référence	Pureté spectrale	Chirp	nonlinéarité
	DFB fibre	NKT koheras	< 100 Hz (RIN)	Bof (piezo)	Ś
6)	DFB SC	G&H	~100 kHz	4 GHz / 100 µs	>%
	DFB SC ++	Teraxion (Indie)	~10 kHz	3 GHz / 10 μs	>%
	ECDL	[1]	~kHz	3 GHz / 20 μs	>%
	ECDL PIC	Rio	~kHz	< GHz / 100 µs	
	eDBR	Deeplight [2]	<10 kHz	10 GHz / 10 µs	>%
0/20	SIL	Deeplight [3]	< 100 Hz	350 MHz / 10 µs	<%

Laser acordable? BRIOCHE: objectif technique #1

> Laser état solide agile en fréquence [1]

 Architecture développée à TRT depuis près de 20 ans (laser "bifréquence")

- > Objectifs
- Transfert technologique vers

- Performances visées
 - >10 mW sortie de fibre
 - 10 GHz en 100 μs
 - Faible largeur de raie (bruit de phase <-110 dBc/Hz @ 1 MHz)
- TRL5

- Milieu à gain état solide > très bas bruit de phase
 - Er³+:verre → 1,5 µm + pompe télécom
- ► Elément non-linéaire intra-cavité [2] → suppression des oscillations de relaxation → faible bruit d'intensité
- Céramique électro-optique → accordabilité
 - Amplitude limitée par l'intervalle spectral libre du laser → cavité courte
 - Vitesse limitée par l'électronique/capacité équivalente de la céramique
- Packaging qq cm³

[1] Maxin et al., J. Lightw. Technol. **31**, 2919 (2013) [2] El Amili et al., Opt. Lett. **39**, 5014 (2014).

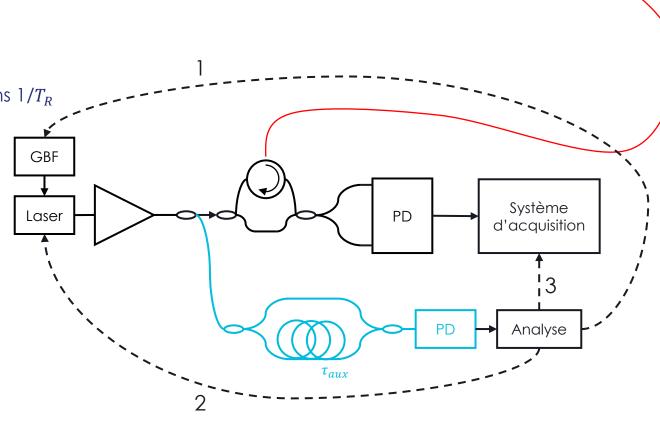
Laser acordable <u>linéairement</u>?

> Besoins

OFDR = compression d'impulsion

ightharpoonup Amplitude des non-linéarités idéalement contenues dans $1/T_R$

Vrai critère pas évident à définir...


> Mesure de non-linéarités ?

- Interféromètre déséquilibré en transmission
- Signal de battement $f_b = \gamma \cdot \tau_{aux} +$ « bruits » [1]

> Et après?

- Précompensation de la commande [2]
- Asservissement sur une fréquence de référence [3]
- Post-processing des données (« deskew filter ») [4]

• ..

[1] Gorju et al., Eur. Phys. J. Appl. Phys. 30, 175 (2005)
[2] Feneyrou et al. Appl. Opt. 56, 9676 (2017)
[3] Crozatier et al., Appl. Phys. Lett. 89, 261115 (2006)

[4] Ding et al. Opt. Express 21, 3826 (2013)

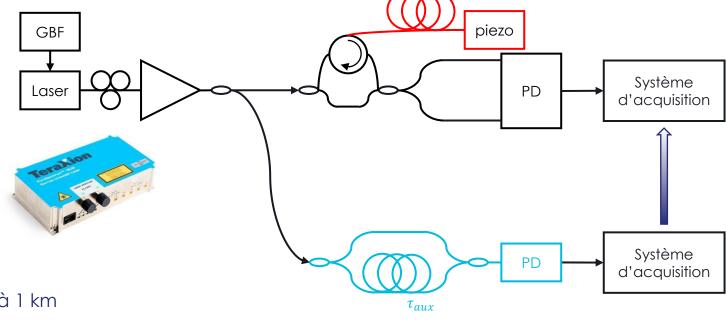
Laser acordable linéairement ? BRIOCHE : objectif technique #2

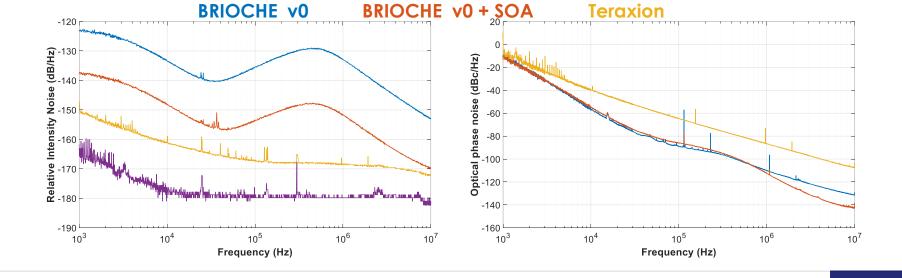
> Système interférométrique de calibration compact

- Interféromètre Mach-Zehnder déséquilibré en transmission
 - Retard ajusté en fonction du taux de chirp
- Grande dynamique de mesure
 - Photodétection adaptée au bruit de la source / système d'acquisition
- Effort de packaging pour limiter la sensibilité environnementale de l'interféromètre
 - Thermique
 - Vibratoire/acoustique

> Objectifs

- Performances
 - Non-linéarité résiduelle < 10⁻⁴ après correction
 - Stabilité 10⁻¹⁰ sur 1 min
- ▶ TRL5

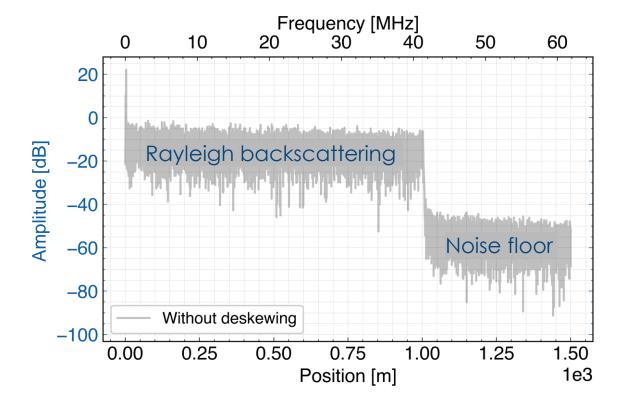

|||||||||||


> Comparaison entre deux lasers

- Laser TRT (BRIOCHE v0) vs Laser Teraxion NLM
 - $\Delta f = 1$ GHz → $\delta z = 10$ cm
 - f_{mod} = 3 kHz → δt = 300 μ s
- Amplification optique (SOA)
- Correction de non-linéarité par « deskew »
- Mesure DAS: étireur piezoélectrique « ponctuel » à 1 km
 - IDIL ST020LF
 - Sinus à 300 Hz

> Constat de départ

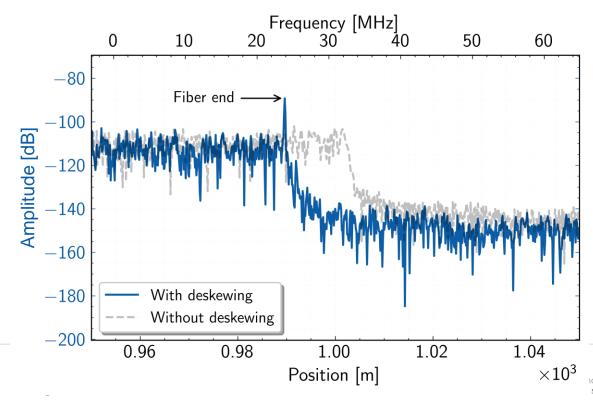
- RIN
- Bruit de phase optique
 - Mesure autohétérodyne

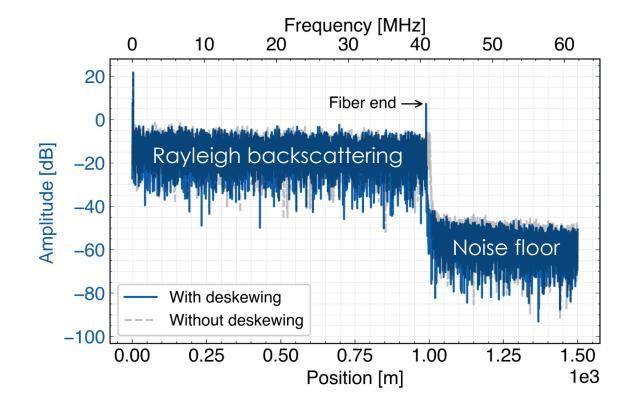


> Profil de rétrodiffusion

Intensité

- Codage fréquence/position
- Trace « épaisse » = variation de l'amplitude de rétrodiffusion
 - → fading en polarisation / interférométrique
- Fin de fibre?

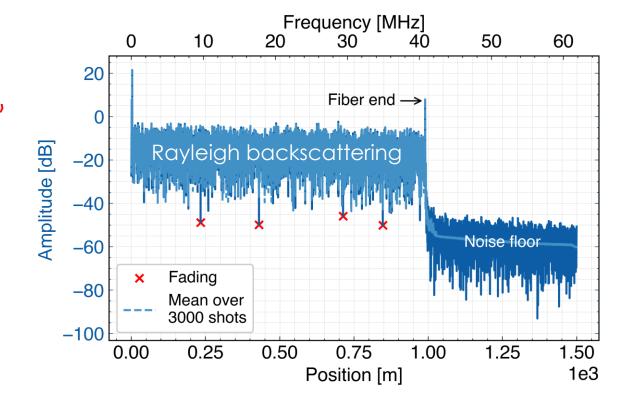




> Profil de rétrodiffusion

Intensité

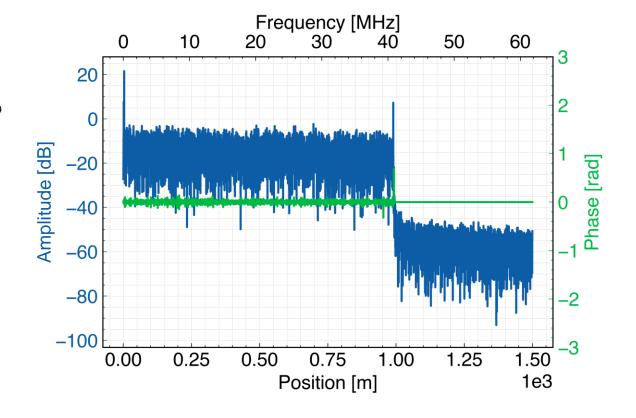
- Codage fréquence/position
- Trace « épaisse » = variation de l'amplitude de rétrodiffusion
 - → fading en polarisation / interférométrique
- Fin de fibre? Vive le « deskew »!



> Profil de rétrodiffusion

Intensité

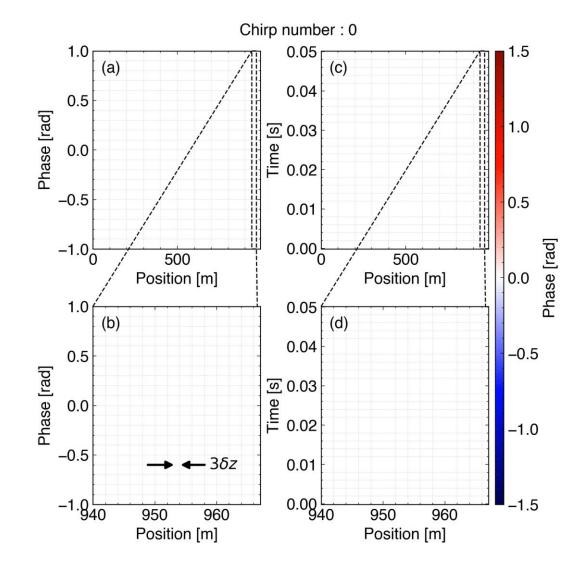
- Codage fréquence/position
- Trace « épaisse » = variation de l'amplitude de rétrodiffusion
 - → fading en polarisation / interférométrique « stationnaire »
- Fin de fibre? Vive le « deskew »!



> Profil de rétrodiffusion

Intensité

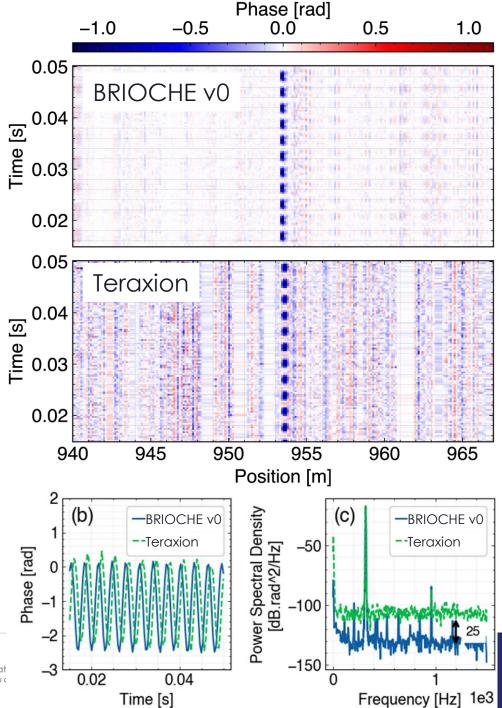
- Codage fréquence/position
- Trace « épaisse » = variation de l'amplitude de rétrodiffusion
 - → fading en polarisation / interférométrique « stationnaire »
- Fin de fibre? Vive le « deskew »!
- Phase



> Profil de rétrodiffusion

Intensité

- Codage fréquence/position
- Trace « épaisse » = variation de l'amplitude de rétrodiffusion
 - → fading en polarisation / interférométrique « stationnaire »
- Fin de fibre? Vive le « deskew »!
- Phase
 - Acquisitions successives : carte de phase « temps/position »
 - Excitation piezoélectrique ponctuelle : sinus à 300 Hz

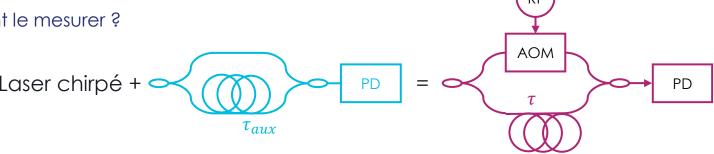

> Profil de rétrodiffusion

Intensité

- Codage fréquence/position
- Trace « épaisse » = variation de l'amplitude de rétrodiffusion
 - → fading en polarisation / interférométrique « stationnaire »
- Fin de fibre? Vive le « deskew »!
- Phase
 - Acquisitions successives : carte de phase « temps/position »
 - Excitation piezoélectrique ponctuelle : sinus à 300 Hz

> Analyse comparative

- 25 dB de gain entre le laser BRIOCHE v0 et le laser Teraxion!
- Pourquoi?



Bruit de phase : quelques pistes, beaucoup de questions

- > Détection cohérente + extraction de phase
- Bruit de phase de l'oscillateur local est une contribution importante à prendre en compte
- Moins y en a, mieux c'est

|||||||||||

- > Quel est l'impact du bruit de phase de la source?
- Intrinsèque ? Correction par le deskew ? Comment le mesurer ?
- Profiter de la voie de calibration!
- Ressemblance à un banc auto-hétérodyne
- $L_{\phi_{battement}}(f) = L_{\phi_{opt}}(f) * 2 \sin(\pi f \tau)$

> Vers une simulation de la réponse ?

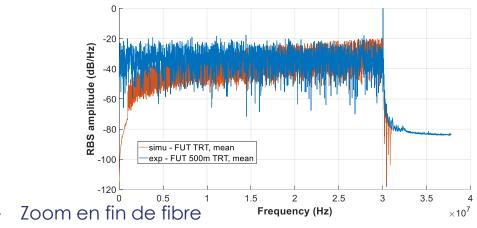
Bruit de phase : peut-on simuler la réponse de la fibre ?

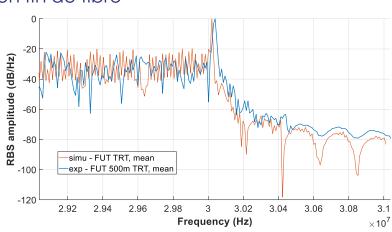
> Depuis la voie de calibration...

- Spectre de battement autour de $f_b = \gamma . \tau_{aux} +$ « bruits »
- Application du filtre de redressement = correction des « bruits » (en partie)
- Descente en bande de base
- Correction de fonction de transfert de la ligne à retard = $L_{\phi_{battement}}(f) = L_{\phi_{opt}}(f) * 2 sin(\pi f \tau_{aux})$
- Extraction de $L_{\phi_{opt}}(f)$

|||||||||||

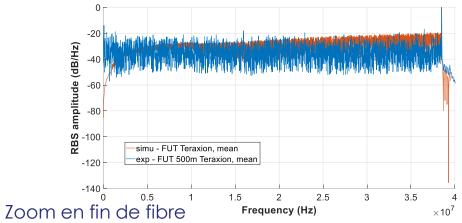
> Vers le signal de rétrodiffusion Rayleigh

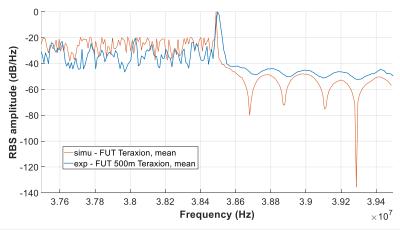

- Centres de rétrodiffusion tout au long de la fibre en au_{RBS_i}
- Application d'une fonction de transfert $2 \sin(\pi f \tau_{RBS_i})$
- Montée en fréquence autour de battement γ . τ_{RBS_i}
- Amplitude de rétrodiffusion aléatoire (fading)
- Somme de tous les battements



Bruit de phase : peut-on simuler la réponse de la fibre ?

> Avec le laser Brioche v0

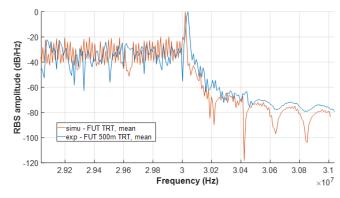

Spectre de rétrodiffusion complet

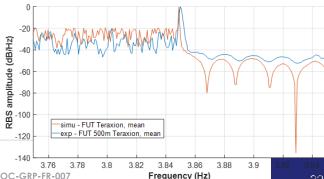


> Avec le laser Teraxion

Spectre de rétrodiffusion complet

De nouvelles sources, plein de perspectives!


> DAS ϕ -OFDR à la mode deBRIOCHE


- Système d'écoute acoustique sur fibre dynamique de haute résolution spatiale
- Très exigeant sur la qualité de la source laser
 - Capacité de modulation
 - Pureté spectrale
- **Applications**

- Barrière acoustique
- Sécurisation de périmètres/zones critiques

> Métrologie de la source et impact sur la mesure : encore beaucoup à comprendre

- Distribution de fading (exp et simu!) semble dépendre de la source -> crosstalk?
- Plancher de bruit = somme incohérente du profil de bruit du laser en chaque point de rétrodiffusion -> extraction du plancher/SNR?
- Efficacité du filtre de redressement à optimiser en fonction du profil de bruit du laser?
- Gestion du fading?

BRIOCHE: objectif technique #3

> Référence optique ultra-stable transportable

- Laser stabilisé sur raie P(16) de C₂H₂ [1]
- Caractérisations métrologiques
 - Laser: maitrise de la longueur d'onde centrale → gestion du fading interférométrique (« stationnarité » ?)
 - Interféromètre mesure/transfert de stabilité
- A terme : utilisation pour DAS ultra-longue distance?
 - Cohérence + stabilité = moyennage

> Objectifs

|||||||||||

- Performances
 - Stabilité 10⁻¹³ à >1s @ 1542 nm
 - Source « accordable » selon ¹²C₂H₂ ou ¹³C₂H₂ pour ajuster la longueur d'onde d'intérêt
- Source transportable (rack 19'')
 - Collaboration LPL/Silentsys
- TRL4

[1] Manamanni et al., J. Opt. Soc. Am. B **39**, 438- (2022)

MERCI

Vincent Crozatier, Thales R&T

vincent.crozatier@thalesgoup.com

www.thalesgroup.com

> Aux organisateurs du workshop

> Teem

Basile Faure, Quentin Berthomé

> Silentsys

Pierre Brochard, Romain Frénéhard, Patrick o'Donoghue,
 Pierre Heslon

> LPL

Vincent Roncin, Frédéric du Burck, Bastien Latorre

> Thales

 Guillaume Arpison, Vincent Kemlin, Clément Charliac, Inès Ghorbel, Nina Kergosien

> AID/DGA

Sylvie Paolacci-Riera, Dominique Fattaccioli