

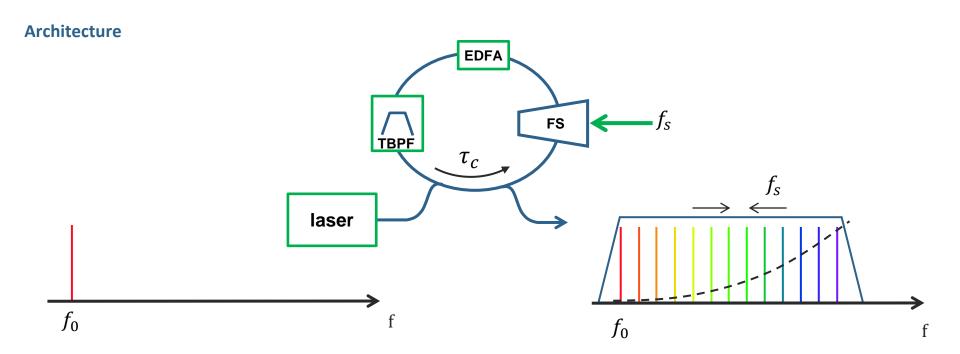
Génération de dual-combs dans les boucles à décalage de fréquence. Quelques exemples d'applications aux capteurs et au traitement de signaux

H. Guillet de Chatellus

Univ Rennes, CNRS, Institut FOTON - UMR 6082, 35000 Rennes, France

1)	Peignes de fréquences	s dans les boucles	à décalage	de fréquence
----	-----------------------	--------------------	------------	--------------

- 2) Dual-comb pour la télémétrie Lidar
- 3) Dual-comb pour les capteurs à fibre distribués
- 4) Corrélation de signaux large bande
- 5) Analyse spectrale de signaux large bande



1)	Peignes de	fréquences	dans les	boucles à	à décalage	e de fréquenc	ce
----	------------	------------	----------	-----------	------------	---------------	----

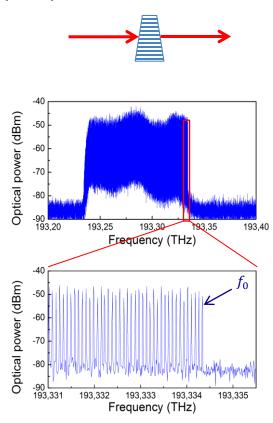
- 2) Dual-comb pour la télémétrie Lidar
- 3) Dual-comb pour les capteurs à fibre distribués
- 4) Corrélation de signaux large bande
- 5) Analyse spectrale de signaux large bande

Boucles à décalage de fréquence (BDF)

Champ électrique en sortie

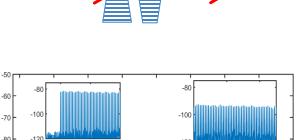
$$E_{out}(t) = E_0 \sum_{0 \le n \le N} g(n) e^{-i2\pi(f_0 + nf_S)t} e^{i2\pi \left(nf_0 + \frac{n(n+1)}{2}f_S\right)\tau_C}$$
 phase spectrale du peigne quadratique

- \checkmark peignes de fréquences, d'espacement f_{S}
- ✓ phase spectrale quadratique (équivalente à GVD) régie par : $f_s \tau_c$.



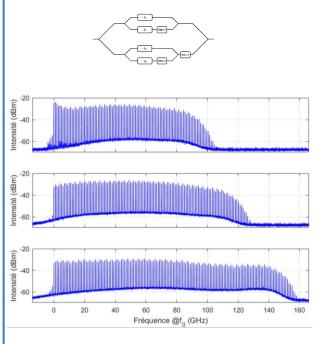
Génération de peignes de fréquences dans les BDF

-90


-100

Modulateur acousto-optique simple (AOFS)

• $f_S = -80 \text{ MHz}$, 1200 lignes

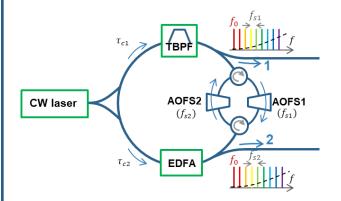

Modulateur acousto-optique double (AOFS)

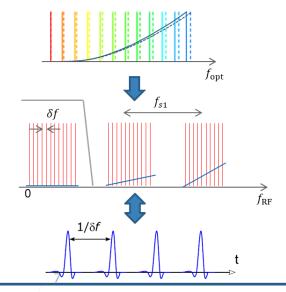
Baseband Frequency [MHz]

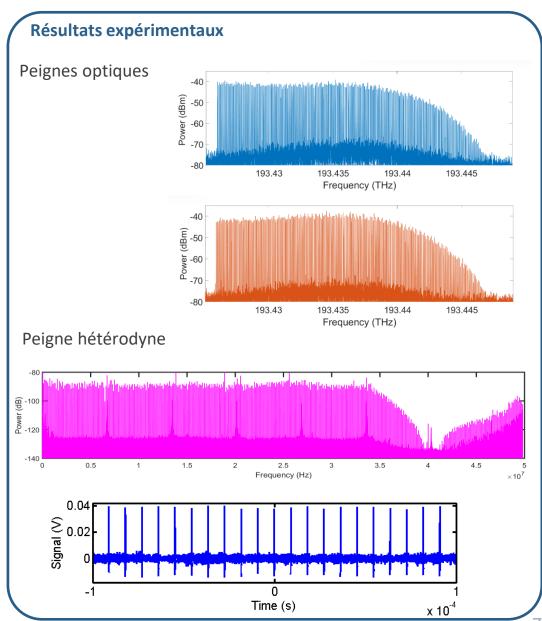
• $f_s = 50 \text{ kHz}$, 800 lignes

Modulateur électro-optique (SSB-MZM)

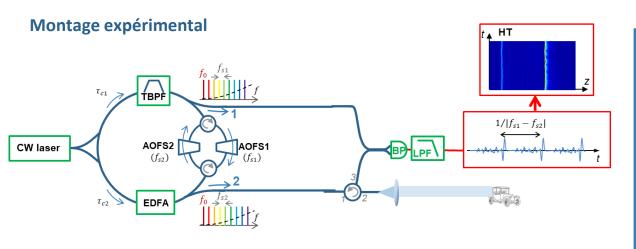
• $f_S = 1$ GHz, 120 lignes


- 2) Dual-comb pour la télémétrie Lidar
- 3) Dual-comb pour les capteurs à fibre distribués
- 4) Corrélation de signaux large bande
- 5) Analyse spectrale de signaux large bande

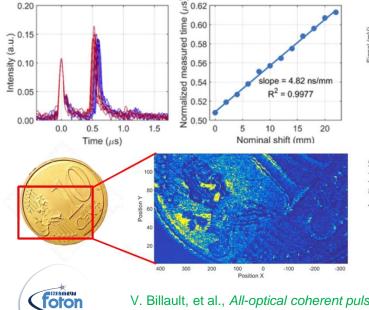

« Duals comb » dans les BDF

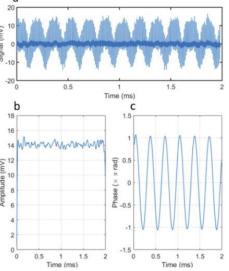

Principe

Génération de deux peignes mutuellement cohérents, d'espacements f_{s1} , $f_{s2} = f_{s2} + \delta f$

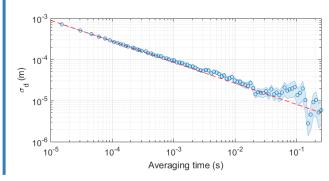


Interférométrie multi-hétérodyne




Télémétrie Lidar dual-comb

Mesures d'amplitude


Mesures de phase

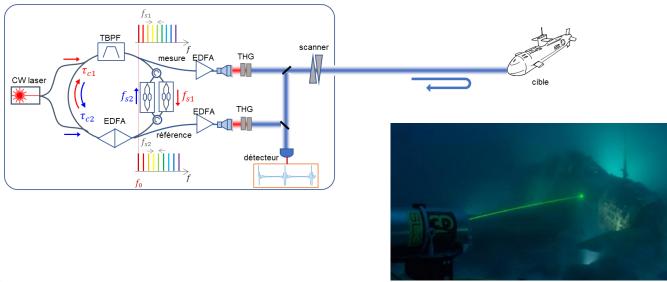
Performances

- résolution : < 1 cm
 (largeur spectrale du peigne : 16 GHz)
- BP de détection < 10 MHz
- distance d'ambiguïté: 2 m (espacement du peigne : 80 MHz)
- taux d'acquisition : 50 μ s (différence d'espacement : δf = 20 kHz)

Précision de la mesure

V. Billault, et al., *All-optical coherent pulse compression for dynamic laser ranging using an acousto-optic dual comb*, Opt. Express **29**, 21369-21385 (2021)

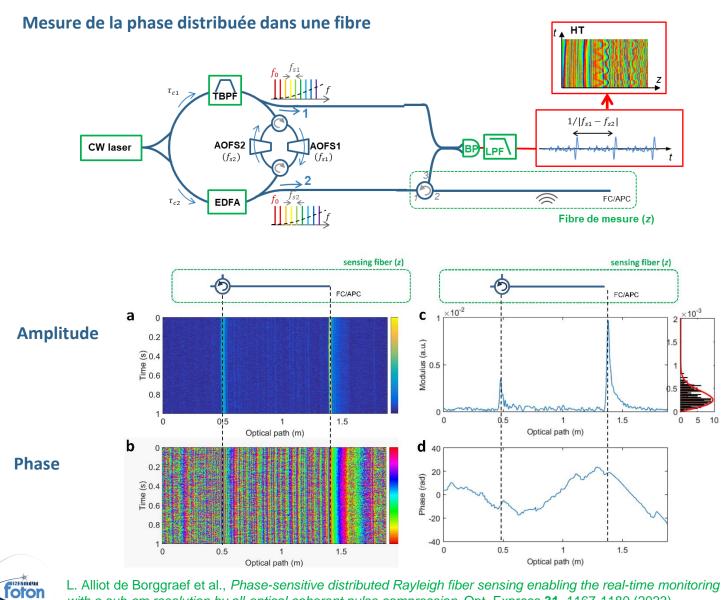
ANR COCOA (ANR-21-CE42-0025)



Lidar cohérent à compression d'impulsions analogique toutoptique

(H. Guillet de Chatellus, LIPhy, FOTON), 2021-2025

 ANR Astrid RACOON (ANR-23-ASZC-0002)
 Lidar dual-comb cohérent adapté au milieu marin (M. Brunel, FOTON), 2023-2027



 Peignes de fréquences dans les boucles à décalage de fréqu 	uence
--	-------

- 2) Dual-comb pour la télémétrie Lidar
- 3) Dual-comb pour les capteurs à fibre distribués
- 4) Corrélation de signaux large bande
- 5) Analyse spectrale de signaux large bande

Capteurs à fibre distribués dual-comb

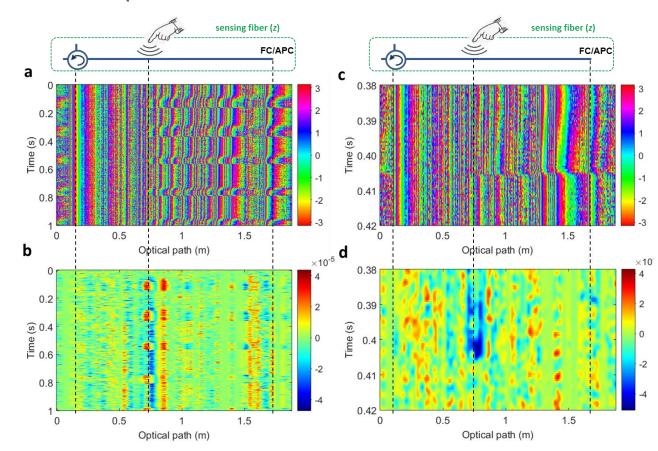
Extraction de la variation d'indice

Méthode

Indice local:

$$n(z) = n_0 + \epsilon(z)$$

Signal de détection:


$$I(t) = I_{\text{ref}}(t) \times e^{i4\pi \frac{f_0}{c} \int_0^{\frac{c\Delta f}{2n_0 f_{s2}} t} \epsilon(z) dz}$$

Extraction de l'indice local:

$$\epsilon(z) = \frac{1}{4\pi} \frac{c}{f_0} \frac{d\phi(z)}{dz}$$

+ filtrage/moyenne

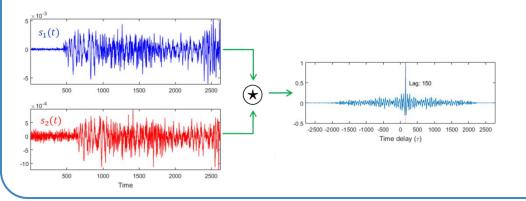
Résultats expérimentaux

Fibre PM commerciale (Rayleigh: -100 dB/mm)

résolution indice : 10^{-5} , résolution temporelle : 1 ms résolution spatiale : 2 cm distance d'ambiguïté : 1.4 m

ANR Astrid MECHOUI (ANR-22-ASTR-0026)

Mesure d'écoulement à haute résolution par boucle à décalage de fréquence bidirectionnelle (<u>V. Crozatier</u>, Thales TRT, FOTON, LIPhy, ENSTA), 2022-2026


1)	Peignes de fréquences	s dans les boucles	à décalage	de fréquence
----	-----------------------	--------------------	------------	--------------

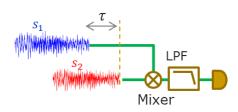
- 2) Dual-comb pour la télémétrie Lidar
- 3) Dual-comb pour les capteurs à fibre distribués
- 4) Corrélation de signaux large bande
- 5) Analyse spectrale de signaux large bande

Fonction de corrélation croisée (FCC):

Mesure du degré de similarité de deux signaux en fonction leur retard τ : $C_{1,2}(\tau) = \langle s_1(t)s_2(t+\tau) \rangle$

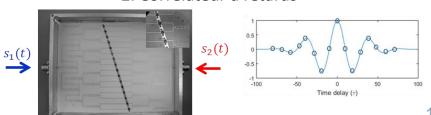
Applications: Localisation d'émetteurs Interférométrie

Approche numérique :

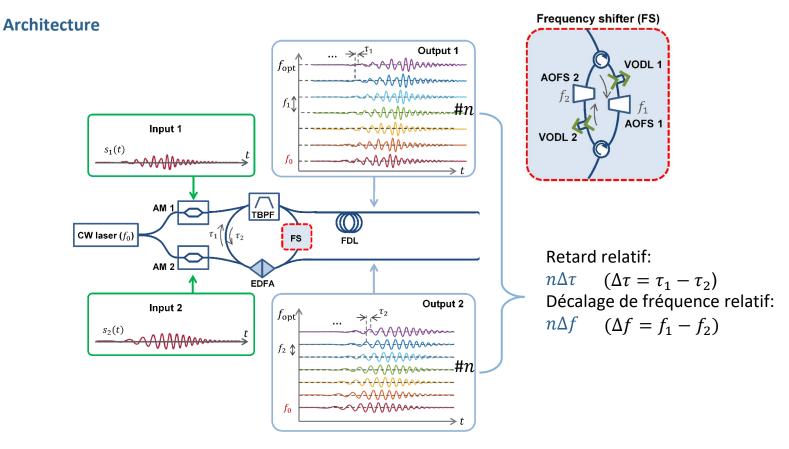

- Numérisation : $f_{\acute{e}ch}$

- Calcul à la volée : $2 \times N \times f_{\acute{e}ch}$ ops /s

(N : nombre de points de la FCC / nombre de retards)


Approches analogiques:

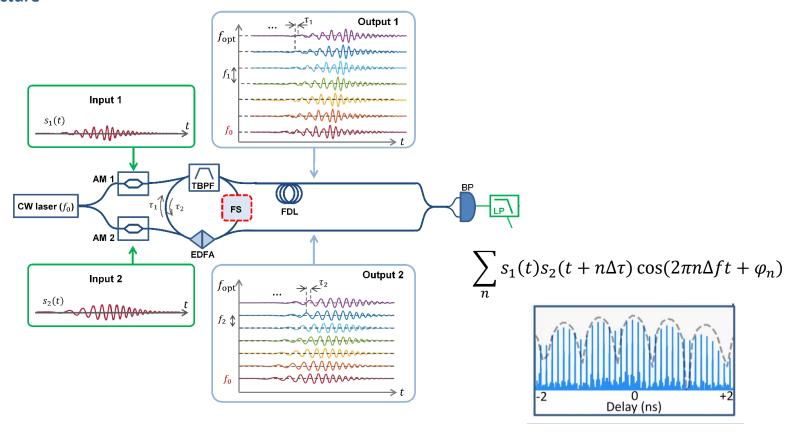
1. « Scanning correlator »


2. Corrélateur à retards

 $\{T_1, T_2, T_3\}$

Holler, IEEE TIM (2011)

Corrélation de signaux dans une BDF

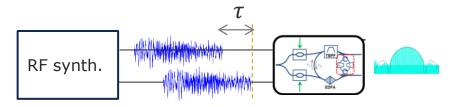

BDF #1 produit des répliques de $s_1(t)$ La réplique #n est retardée de $n\tau_1$ et décalée en fréquence de nf_1

BDF #2 produit des répliques de $s_2(t)$ La réplique #n est retardée de $n au_2$ et décalée en fréquence de nf_2

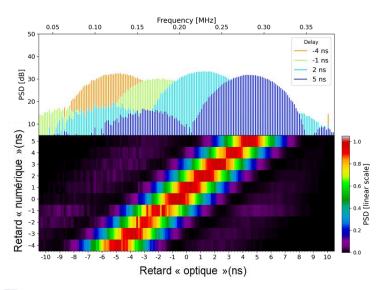
foton

Corrélation de signaux dans une BDF

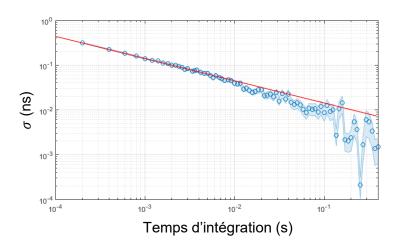
Architecture



La composante fréquentielle à $n\Delta f$ donne la valeur de la FCC à $n\Delta \tau$

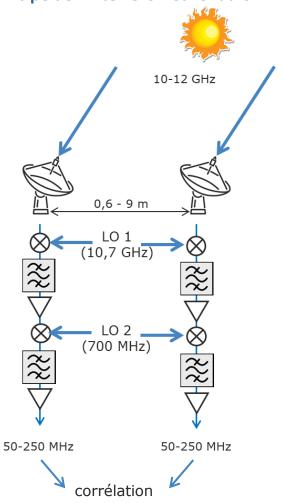


Mesure de retards temporel

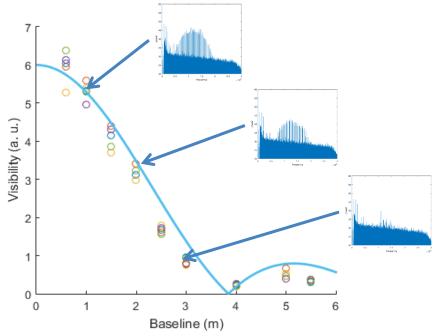

Principe

Deux versions retardées du même signal (120 MHz BW) sont envoyées vers le corrélateur.

Précision sur la mesure de retards

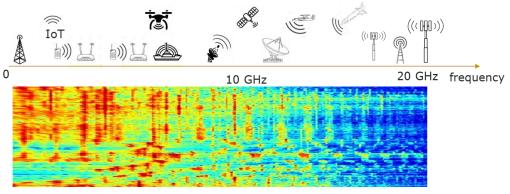


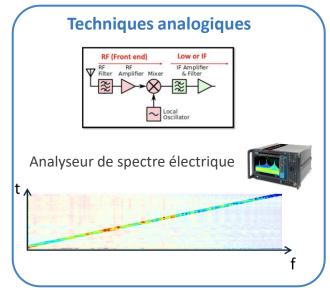
Précision: 10 ps (100 ms intégration) << 8,3 ns (temps de cohérence du signal d'entrée)

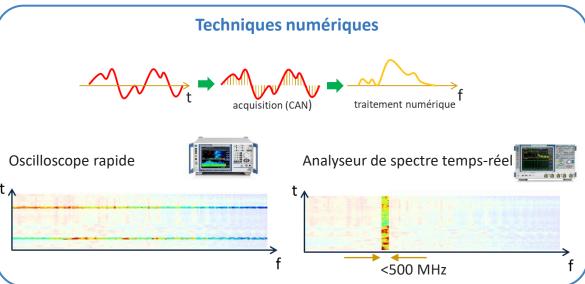

Expérience 13cm (Grenoble 2022, Rennes 2024)

Principe de l'interférométrie radio

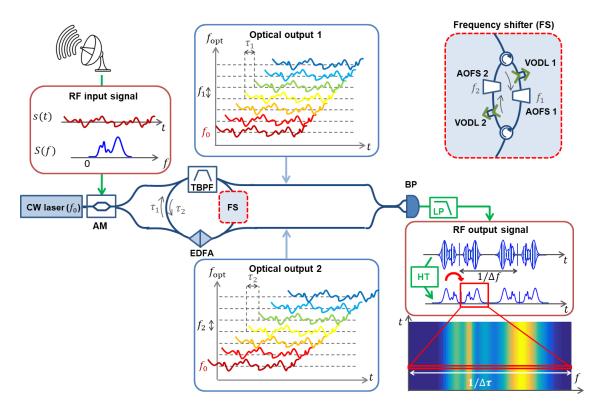
Résultats expérimentaux (corrélation photonique)




1)	Peignes de fréquences	s dans les boucles	à décalage	de fréquence
----	-----------------------	--------------------	------------	--------------


- 2) Dual-comb pour la télémétrie Lidar
- 3) Dual-comb pour les capteurs à fibre distribués
- 4) Corrélation de signaux large bande
- 5) Analyse spectrale de signaux large bande

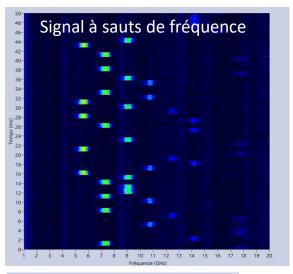
Analyse spectrale de signaux

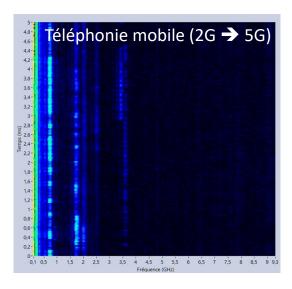


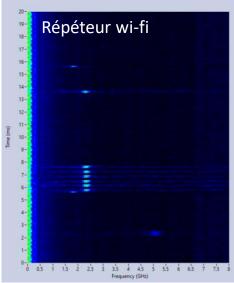
→ Comment faire l'analyse spectrale de signaux radio large bande (0-20 GHz), en temps réel (100% de probabilité d'interception) ?

Analyse spectrale dans une BDF

Architecture

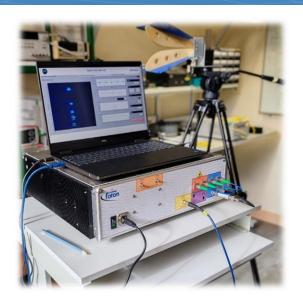

Entrée	TF trace temporelle	Trace temporelle
$s_1(t), s_2(t)$	Corrélation croisée (FCC)	Densité spectrale de puissance croisée (CPSD)
$s_1(t), s_1(t)$	Auto-corrélation	Densité spectrale de puissance (PSD)


Projection fréquence-temps (« frequency-to-time mapping ») :


Le spectre du signal d'entrée se retrouve dans la trace temporelle du signal de sortie.

Résultats expérimentaux

Performances


Largeur de bande	20 GHz
Dynamique (50 μs)	23 dB
Sensibilité	-18 dBm (RF input power)
Résolution fréquentielle	80 MHz
Résolution temporelle	50 μs
Probabilité d'interception	100 %
Données de sortie	10 MSa/s

Financement: Prématuration CNRS (Photonic ASP, 2020)

Conclusion

- Réalisation d'un prototype compact (19 ")
- Plate-forme commune (double BDF) permettant de réaliser l'ensemble des fonctionnalités (applications capteurs, photonique micro-ondes)
- Limites intrinsèques (dynamique, SNR, nonlinéarité de la réponse) dues principalement à l'ASE / la saturation du milieu à gain

LIPhy

Côme Schnébelin Nithyanandan Kanagaraj

Institut FOTON

Louis Alliot de Borggraef Tituan Allain Marc Brunel Goulc'hen Loas Anthony Carré Cyril Hamel Steve Bouhier Ludovic Frein

Thales TRT

Vincent Billault Vincent Crozatier Guénolé Dandé

IPAG

Guillaume Bourdarot Jean-Philippe Berger

José Azaña Vicente Duran Carlos Fernandez-Pousa

