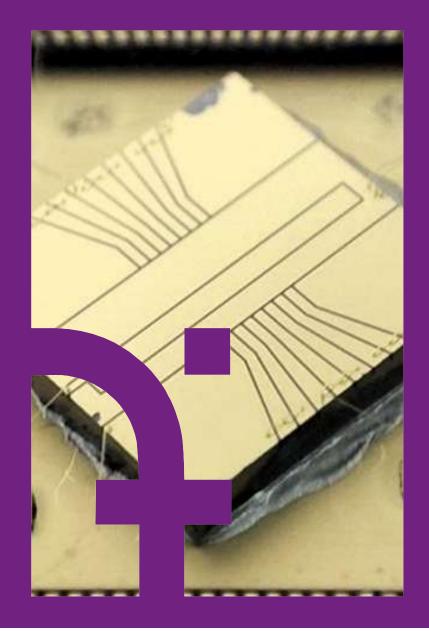
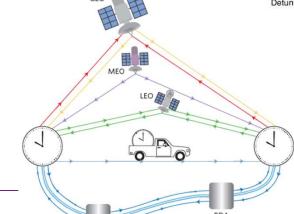
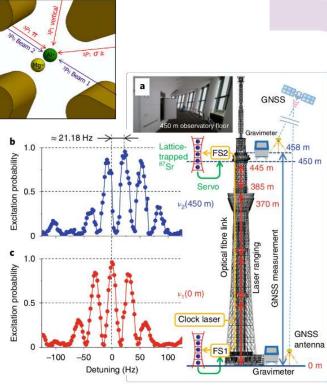


Alan Boudrias, Valérie Soumann, Moustafa Abdel-Hafiz, Clément Lacroûte – 8 octobre 2025





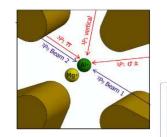
SINGLE-ION YB+ OPTICAL CLOCK

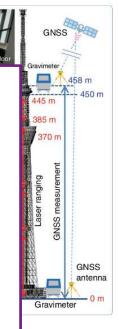

Optical clocks reach fractional frequency stabilities of $\sim 10^{-15}$ $\tau^{-1/2}$ for single-ion clocks to $< 10^{-16}$ $\tau^{-1/2}$ for optical lattice clocks, and fractional **accuracies of 10⁻¹⁸** and below [1].

- BIPM has defined a roadmap for the redefinition of the SI second;
- several proposals consider a multi-species definition;
- relativistic effects have been tested with 18-digits precision, and **height measurements** reach the cm level [2].
- ⇒ Several calls and projects aim at the implementation of continental **optical clocks network** [3,4].
- ⇒ Future optical timescales will require flywheel oscillators, equivalent to H-Masers.
- \Rightarrow Robust, continuous-operation clocks must be built.

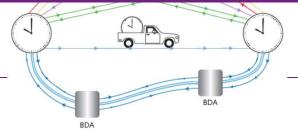
[1] Brewer et al., PRL 123, 033201 (2019) [2] Takamoto et al., Nat. Phot. 14, 411-415 (2020) [3] C. Lisdat et al., Nat. Comm. 7, 12443 (2016) [4] F. Riehle, Nat. Phot. 11, 25 (2017)

SINGLE-ION YB+ OPTICAL CLOCK

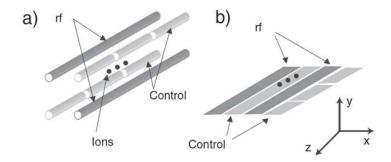

Optical clocks reach fractional frequency stabilities of $\sim 10^{-15}$ $\tau^{-1/2}$ for single-ion clocks to $< 10^{-16} \, \tau^{-1/2}$ for optical lattice clocks, and fractional **accuracies of 10⁻¹⁸** and below [1].


- BIPM has defined a roadmap for the redefinition of the SI second:

- several proposals of
- relativistic effects precision, and heigen
 [2].
- ⇒ Several calls and continental optical
- ⇒ Future optical time equivalent to H-Ma
- ⇒ Robust, continuous

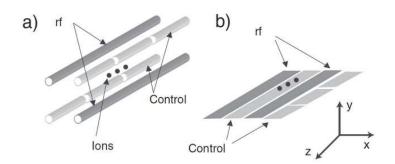

[1] Brewer et al., PRL 123, 033201 (2019) [2] Takamoto et al., Nat. Phot. 14, 411-415 (2020 [3] C. Lisdat et al., Nat. Comm. 7, 12443 (2016) [4] F. Riehle, Nat. Phot. 11, 25 (2017)

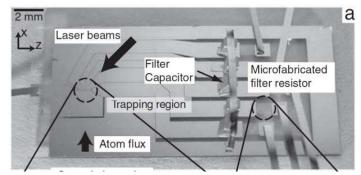
We are building a compact, single-ion optical clock based on a surface-electrode trap



SURFACE-ELECTRODES ION TRAPS

Optical single-ion clocks are usually based on 3D electrodes geometries (linear Paul traps, ring traps, endcap traps...), either machined or micro-fabricated.

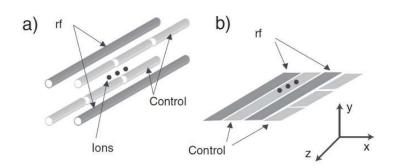

From Seidelin et al., PRL 96, 253003 (2006).

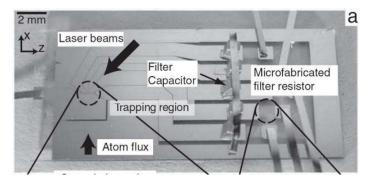


SURFACE-ELECTRODES ION TRAPS

Optical single-ion clocks are usually based on 3D electrodes geometries (linear Paul traps, ring traps, endcap traps...), either machined or micro-fabricated.

Since their demonstration in 2006, Surface-electrode geometries have been widely used within the QIP community, allowing the fast and coherent control of single-ions and the integration of additional functions to the trap (integrated beam couplers, detection, microwave lines...)


From Seidelin et al., PRL 96, 253003 (2006).



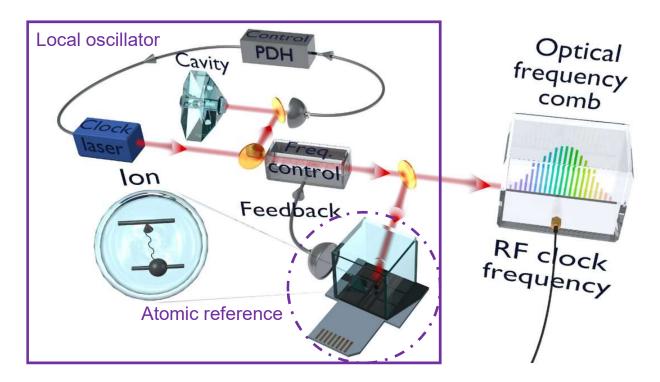
SURFACE-ELECTRODES ION TRAPS

Optical single-ion clocks are usually based on 3D electrodes geometries (linear Paul traps, ring traps, endcap traps...), either machined or micro-fabricated.

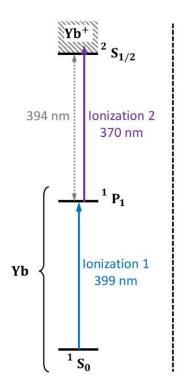
Since their demonstration in 2006, Surface-electrode geometries have been widely used within the QIP community, allowing the fast and coherent control of single-ions and the integration of additional functions to the trap (integrated beam couplers, detection, microwave lines...)

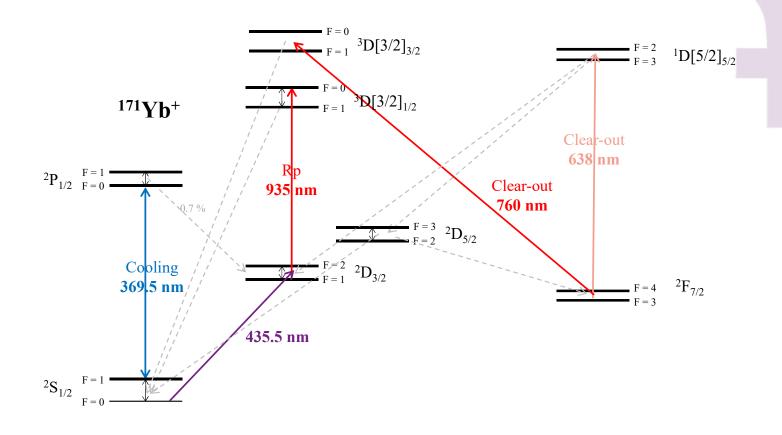
From Seidelin et al., PRL 96, 253003 (2006).

- Simple geometries;
- versatility;
- easy fabrication with trad. clean-room processes;
- good control of surface quality and tolerances.


- Anomalous heating;
- low breakdown voltages;
- shallower traps;
- shorter lifetimes.

OBJECTIVES

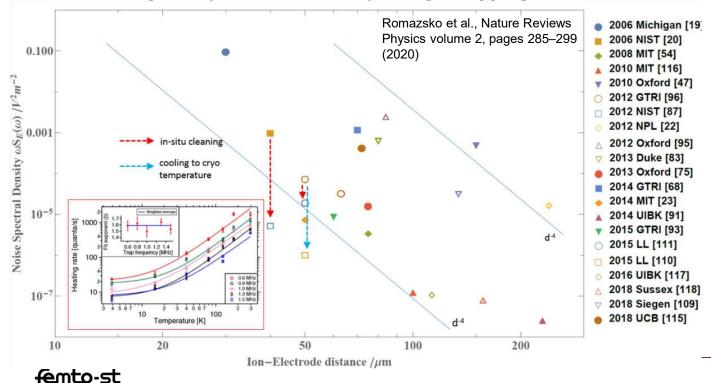

We are building a compact optical clock based on a surface-electrode trap for $^{171}\text{Yb}^+$, with target volume and fractional frequency stability of <500 L and $10^{-14}\tau^{-1/2}$.


We are working on the E2 transition at 435.5 nm.

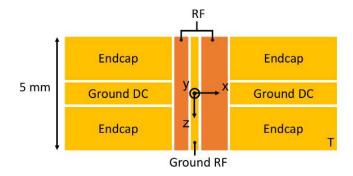
YB+ STRUCTURE

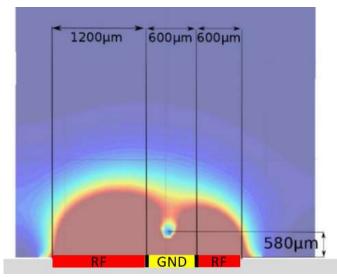
SURFACE-ELECTRODES ION CLOCK

- > Operate in the **Lamb-Dicke regime** (Doppler effect rejection), *ie* high trapping frequencies.
- **Low micromotion** (2^d order Doppler effect rejection).
- > Long lifetime (avoid deadtimes linked to ion loading).
- **Low heating rate** (avoid decoherence), *ie* high trapping distance.

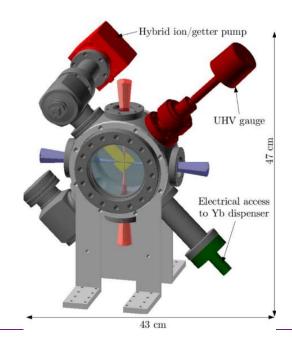


SURFACE-ELECTRODES ION CLOCK


- Operate in the Lamb-Dicke regime (Doppler effect rejection), ie high trapping frequencies.
- **Low micromotion** (2^d order Doppler effect rejection).
- ➤ Long lifetime (avoid deadtimes linked to ion loading).


TECHNOLOGIES

Low heating rate (avoid decoherence), ie high trapping distance.



TRAP DESIGN - 5-WIRE GEOMETRY

- RF electrodes widths: 600 μm and 1200 μm
- Trapping distance: ~500 μm
- $\Omega_{RF}/(2\pi)\sim3$ to 6 MHz, $V_{RF}=75\text{-}150$ V $\omega_{ax}/(2\pi)\sim85$ kHz $\omega_{rad}/(2\pi)\sim350$ kHz

PROTOTYPE TRAP

Prototype chip trap:

 9 gold-plated copper electrodes on FR4 PCB

(not high-vaccum graded)

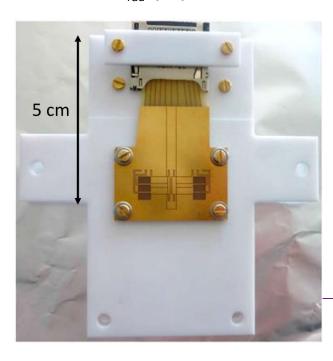
 RF electrodes widths: 600 μm and 1200 μm

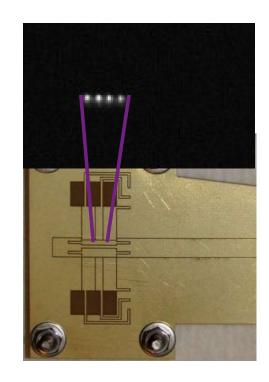
Trapping distance: ~500 μm

 $\Omega_{\rm RF}/(2\pi)\sim$ 5.7 MHz, $V_{\rm RF}=150~{
m V}$ $\omega_{\rm ax}/(2\pi)\sim$ 85 kHz $\omega_{\rm rad}/(2\pi)\sim$ 350 kHz

PROTOTYPE TRAP

Prototype chip trap:


 9 gold-plated copper electrodes on FR4 PCB


(not high-vaccum graded)

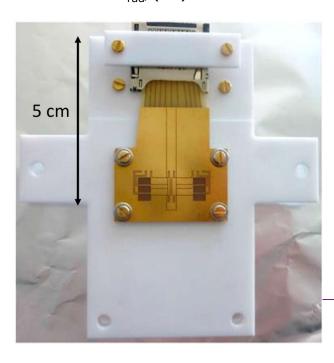
 RF electrodes widths: 600 µm and 1200 µm

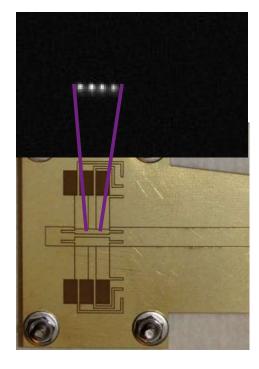
Trapping distance: ~500 μm

• $\Omega_{RF}/(2\pi)\sim5.7$ MHz, $V_{RF}=150$ V $\omega_{ax}/(2\pi)\sim85$ kHz $\omega_{rad}/(2\pi)\sim350$ kHz

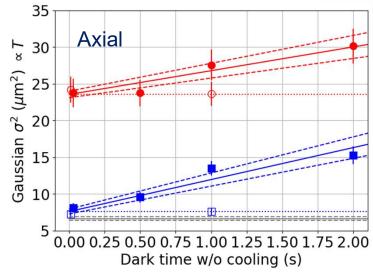
Starting with ¹⁷⁶Yb⁺ for simplicity

- ⇒ Fluorescence detection using a high NA optics, a CCD camera for spatial resolution (magnification ~x6) and/or a PMT for detection efficiency (collection efficiency 2.1%) and good SNR
- \Rightarrow Detection axis = perpendicular to the chip


PROTOTYPE TRAP


Prototype chip trap:

 9 gold-plated copper electrodes on FR4 PCB


(not high-vaccum graded)

- RF electrodes widths: 600 µm and 1200 µm
- Trapping distance: ~500 μm
- $\Omega_{RF}/(2\pi)\sim5.7$ MHz, $V_{RF}=150$ V $\omega_{ax}/(2\pi)\sim85$ kHz $\omega_{rad}/(2\pi)\sim350$ kHz

Trap lifetime ~1500 s Trapping frequencies from 250 to 350 kHz Heating rate ~8000 phonons/s

arXiv:2206.08215 / App. Phys. B 129, 37 (2023)

Starting with ¹⁷⁶Yb⁺ for simplicity

- ⇒ Fluorescence detection using a high NA optics, a CCD camera for spatial resolution (magnification ~x6) and/or a PMT for detection efficiency (collection efficiency 2.1%) and good SNR
- ⇒ Detection axis = perpendicular to the chip

PROTOTYPE CHIP - EXPECTED PERFORMANCES

Heating rate

8 10³ phonons/s

Trapping frequencies 350 kHz

Clock operation:

Reduction of probing duration to a **few ms** only (vs $\tau_{D3/2}$ ~53 ms)

$$\Rightarrow$$
 $\sigma_y \sim 5 \ 10^{-14} \ \tau^{-1/2}$

Micromotion

Compensated using AM modulation of the RF voltage

Stark: calculation from exp.

measurements;

Quadrupole: estimated from literature.

Shift	Prototype	Prototype trap	State-of-the-art
	trap	advanced	materials
2 ^d order Doppler	3.1×10^{-17}	3.1×10^{-17}	$\approx 10^{-18} [50]$
Stark	3.6×10^{-17}	1.2×10^{-17}	$\approx 10^{-18} [51]$
Quadrupole	10^{-15}	10^{-16}	$\approx 10^{-17} [51]$

arXiv:2206.08215 / App. Phys. B 129, 37 (2023)

PROTOTYPE CHIP - EXPECTED PERFORMANCES

Heating rate

8 10³ phonons/s

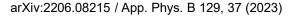
Trapping frequencies 350 kHz

Micromotion

Compensated using AM modulation of the RF voltage

Short lifetime

Should be improved


Micromotion

⇒ use photo-correlation at trap secular frequencies to implement 3D optimization with a single beam

<u>Lifetime</u>

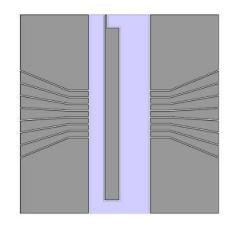
Use UHV-compatible materials for the chip

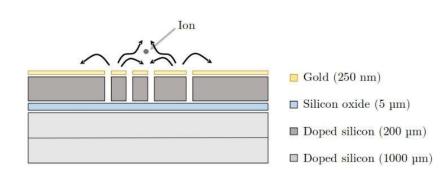
Shift	Prototype	Prototype trap	State-of-the-art
	trap	advanced	materials
2 ^d order Doppler	3.1×10^{-17}	3.1×10^{-17}	$\approx 10^{-18} [50]$
Stark	3.6×10^{-17}	1.2×10^{-17}	$\approx 10^{-18} [51]$
Quadrupole	10^{-15}	10^{-16}	$\approx 10^{-17} [51]$

New chip

- ✓ Designed and produced locally in clean room
 - SOI electrodes
 - · Gold plated
 - Much smaller dielectric interspacings
 - Cleaned by plasma

Trapping parameters


- Trapping frequencies of 250 kHz or more
 - Increase V_{RF}
 - Lower Ω_{RF}

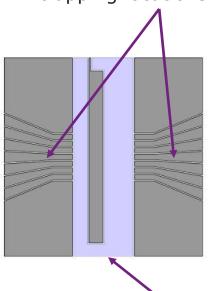

Better materials

- ⇒ better vacuum
- ⇒ lower heating rate

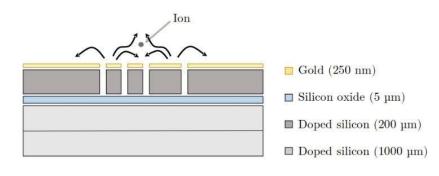
New chip

- ✓ Designed and produced locally in clean room
 - SOI electrodes
 - Gold plated
 - Much smaller dielectric interspacings
 - Cleaned by plasma

Trapping parameters


- Trapping frequencies of 250 kHz or more
 - Increase V_{RF}
 - Lower Ω_{RF}

Better materials


- ⇒ better vacuum
- \Rightarrow lower heating rate

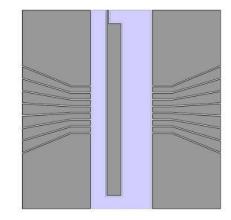
- \Rightarrow EMM compensation
- ⇒ Possible to use multiple trapping locations

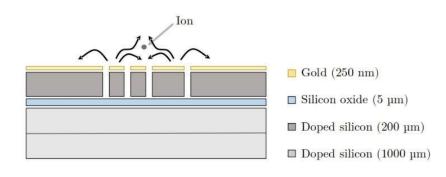
Inter-electrodes spacing=20 µm

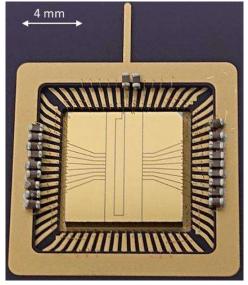
Center electrodes width identical to prototype

New chip

- ✓ Designed and produced locally in clean room
 - SOI electrodes
 - Gold plated
 - Much smaller dielectric interspacings
 - Cleaned by plasma


Trapping parameters


- Trapping frequencies of 250 kHz or more
 - Increase V_{RF}
 - Lower Ω_{RF}


Better materials

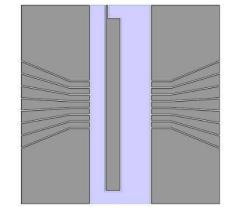
- ⇒ better vacuum
- ⇒ lower heating rate

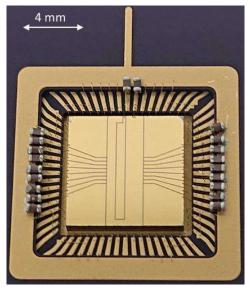
Commercial ceramic chip-carrier

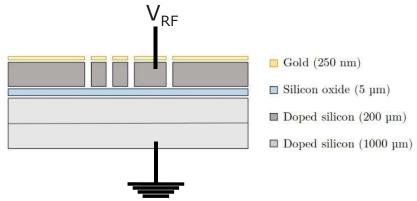
Filtering capacitors on all DC electrodes

New chip

- ✓ Designed and produced locally in clean room
 - SOI electrodes
 - Gold plated
 - Much smaller dielectric interspacings
 - Cleaned by plasma


Trapping parameters


- Trapping frequencies of 250 kHz or more
 - Increase V_{RF}
 - Lower Ω_{RF}


Better materials

- \Rightarrow better vacuum
- ⇒ lower heating rate

Initial goal: 500 Vpp (or more!)

MICRO-FABRICATED TRAP: BREAKDOWN TESTS

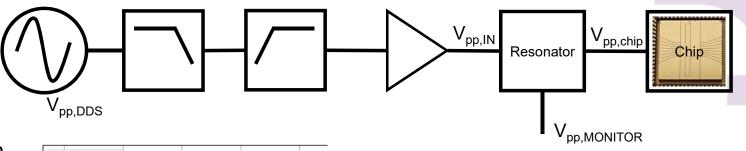
<u>Dedicated chamber</u>

- UHV
- RF supply
- Optical access

Detect breakdown through

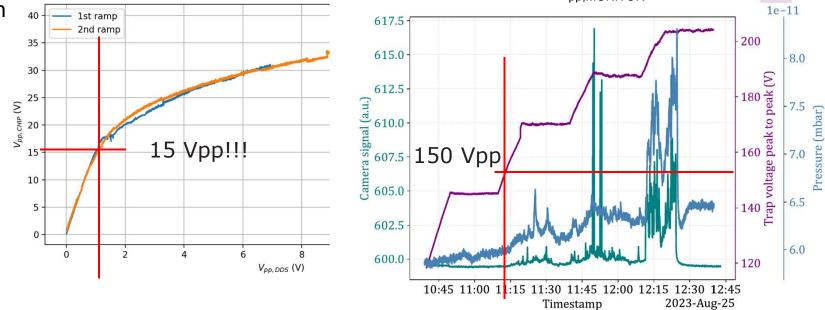
- Imaging
- Voltage monitoring
- · Pressure monitoring

 \Rightarrow Very random results...

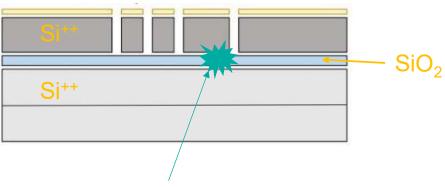


MICRO-FABRICATED TRAP: BREAKDOWN TESTS

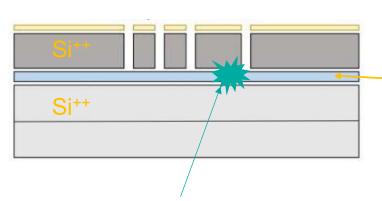
Dedicated chamber


- UHV
- RF supply
- Optical access

Detect breakdown through

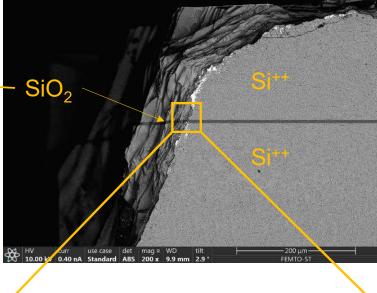

- Imaging
- Voltage monitoring
- · Pressure monitoring

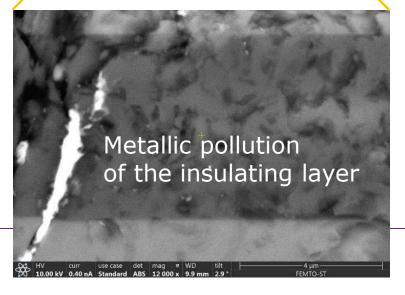
⇒ Very random results...


Most likely breakdown point; matches observations.

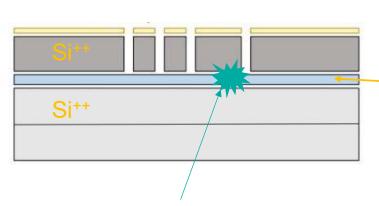
BUT: 5 μ m of SiO2 should handle at least 200-300 V.

TSP tests reveal non-linear behavior of random electrodes (junction-like)

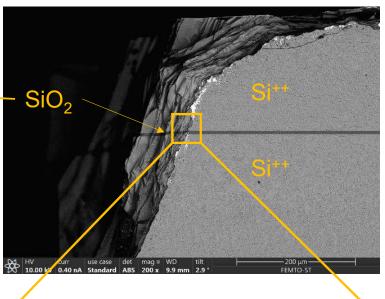


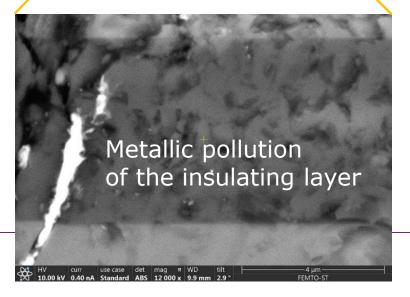


Most likely breakdown point; matches observations.


BUT: 5 μ m of SiO2 should handle at least 200-300 V.

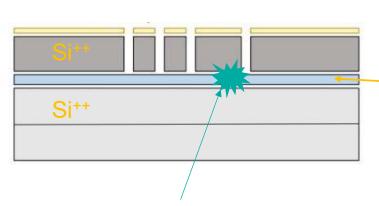
TSP tests reveal non-linear behavior of random electrodes (junction-like)

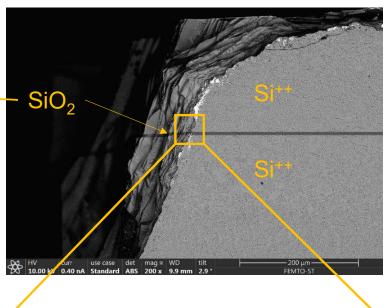


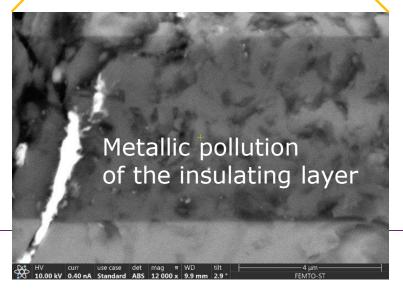


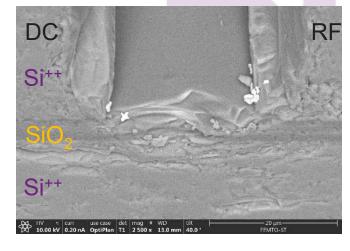

Most likely breakdown point; matches observations.

BUT: 5 μ m of SiO2 should handle at least 200-300 V.


TSP tests reveal non-linear behavior of random electrodes (junction-like)

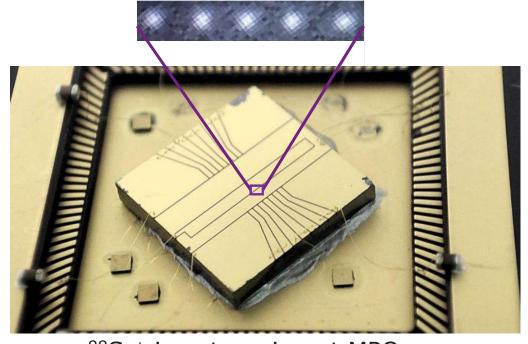




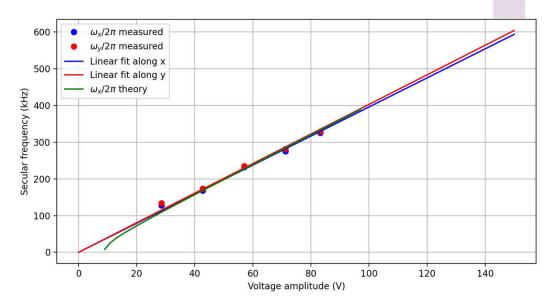

Most likely breakdown point; matches observations.

BUT: 5 μ m of SiO2 should handle at least 200-300 V.

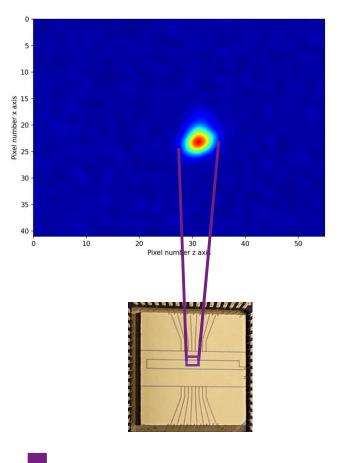
TSP tests reveal non-linear behavior of random electrodes (junction-like)


Random behavior due to random contamination of the chip flanks.

Metallic pollution came from wafer dicing!

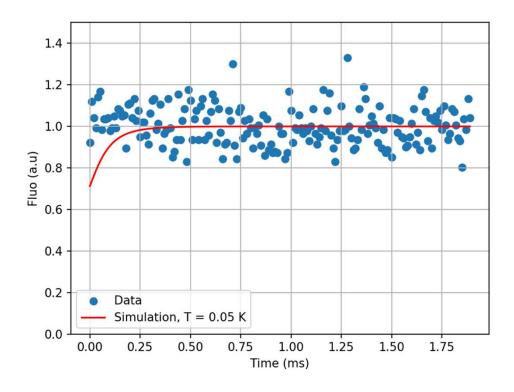

- ⇒ Easy fix; chip v2 underway
- ⇒ Possible to find nonpolluted chips.

MICROFABRICATED TRAP: SR+ (PARIS) IONS


88Sr+ ions trapping at MPQ w/ L. Guidoni & J.P. Likforman April 2024

Secular frequencies evolution in the radiale plan (x,y) as a function of the RF voltage $@\Omega_{RF}=4,62 \text{ MHz}$

MICROFABRICATED TRAP: YB+ (BESANÇON) IONS



- Applied voltages:
 - RF frequency : 3,77 MHz
 - RF voltage: 200 Vpp
 - DC voltages : Between ± 10 V
- Trap:
- Trap frequencies 80 kHz, 209 kHz and 223 kHz
- Lifetime 6000 s without clear-out laser, many hours with clear-out laser
- Measurement runs > 12 hours regularly
- Vacuum:
 - Measured 7×10⁻¹¹ mbars
 - Estimated collision rate 8/hour

MICROFABRICATED TRAP: YB+ (BESANÇON) IONS

Heating rate:

Heating rate estimation based on the analysis of the temporal dynamics of a several Doppler cooling cycle [1].

Upper bound estimated < 1000 phonons/s.

Heating rate improved by a **factor 10.**

[1] Wesenberg, J. H., et al. "Fluorescence during Doppler cooling of a single trapped atom." Physical Review A—Atomic, Molecular, and Optical Physics 76.5 (2007): 053416.

CONCLUSION

- Successfull design and fabrication of a Surface-electrode for TF metrology.
- Improvement of trap lifetime and heating rate.
- Clock laser installed, clock transition spectroscopy asap.
- 2.0 chip in fabrication, with improved process.
- Should enable higher operating voltages.
- Collaboration with MPQ on trap design, perspective of optical waveguides integration.

ION TRAPPING TEAM

Alan Boudrias (PhD)
Josipa Madunic (PhD)
Moustafa Abdel Hafiz
Yann Kersalé
Clément Lacroûte

Former members

<u>PhDs</u> Bachir Achi Lucas Groult

<u>Post-docs</u> Marion Delehaye Avinash Kumar Thomas Lauprêtre

