

The Oscillator IMP

E. Rubiola[∇], F. Vernotte[∂], V. Giordano[∇]

▼ FEMTO-ST Institute ∂ Observatory of Besancon

Oscillator Instability Measurement Platform

At your choice, P stands for Playground, Playstation or Platform You can also read Oscillator IMPact

100% Besançon

Web page http://oscillator-imp.com home page http://rubiola.org

mages downloaded from public-domain web sites

Time, Earth and Pendulum

The rotation of the Earth provides ultimate accuracy – yet only for timekeeping –

The pendulum is the first instrument that enables the precise measurement of a short time interval

- Science and engineering rely on the pendulum
- The pendulum is steered to the rotation of the Earth

The free land to conquest matches our best skills Short-term stability – Spectral purity – Jitter

- Scanning the technology, we notice that virtually all systems relying on time and frequency
 - need that the oscillator is stable for a suitably short integration time τ
 - the absolute frequency can be provided by an external reference or steered to an atomic time scale.
- This pattern is found in
 - Galileo's pendulum, steered to the Earth rotation (τ ≤ 10¹ ...10⁶ s)
 - radars $(\tau = 10^{-6}...10^{-2} s)$
 - telecommunication systems ($\tau \le 1...10^5$ s)
 - computer boards (τ < ≈1 μs)
 - particle accelerators (τ ≤ ≈100 ms)
 - very-large baseline interferometry ($\tau = 10^{-1}...10^4$ s)
 - space missions ($\tau = 1...10^3$ s)
 - GPS/Galileo/Glonass (τ ≤ 10⁶ s, i.e. ≈2 weeks)

Enrico and the Duffing oscillator, seen by Roberto Bergonzo

- Emerging domain, the competition is surprisingly low compared to the high relevance
- Why? World-class µwave/RF is a blend of engineering, science and art

BIPM Calibration & Meas. Capabilities

Oscillator IMP - Block diagram

Quality

S. Ubaldi (all UFC) [M.Mourey]

Project Leader

E.Rubiola [V.Giordano]

Executive Comittee

E.Rubiola, V.Giordano, F.Vernotte

Time &

Statistics

F. Vernotte [F. Meyer]

François Vernotte

Timothée Accadia

Emmanuel Tisserand

Francois Meyer

Eric Meyer

Computer systems

Microwave Photonics

Y.Kersalé [R.Boudot]

Yann Kersalé Jacques Millo Clement Lacroute

Rodolphe Boudot **Emanuel Bigler**

Luca Furfaro Yannick Gruson Philippe Abbé **David Vernier**

Assemble ULE FP etalon Lock FS laser to ULE-FP Steer ULE-FP to µwave **Dual-mode lasers**

Microwaves & RF

V.Giordano [P.Y.Bourgeois]

Vincent Giordano Serge Grop Benoît Dubois

Pierre-Yves Bourgeois Roger Bourquin (emeritus) Rémi Brendel (emeritus)

Yannick Gruson Cyrus Rocher

Install H masers 3-corner hat OCXO ensemble System integration Measurements

Metrology & Env.

S.Galliou [E.Rubiola]

Serge Galliou G. Goavec Merou

Sylvain Ballandras Enrico Rubiola Joël Imbaud Marc Mourey Jean-Jacques Boy **Tomas Baron** Philippe Abbé **Nathalie Cholley**

Perturbed environment Meas. of $S_{\phi}(f)$ & $\sigma y(\tau)$ Install meas.sys. (ΔY etc.) Quality & accreditations

Install TWSTFT GPS -> CP-GPS Upgrade time-scale Run the time scale

Digital Electronics

P.-Y. Bourgeois [E.Rubiola]

P.Y.Bourgeois E.Rubiola

Timothée Accadia Benoît Dubois Nicolas Gautherot Eric Meyer **Emmanuel Tisserand**

3-corner-hat estimation

Custom hardware Software $S\varphi(f) \& \sigma y(\tau)$ White Rabbit Computer systems Installations Web site

[in brackets] backup, for all the key persons

Administration Manager

IE CDD [.....] Aryanne Hicks [F.Cornu]

Tough: 13.5 years manpower in 2013 - Thanks to all colleagues

Spherical cavity (commercial CPER-FEDER 100 keuros)

All the stabilization electronics is ready

Laser locked to the cavity

laser frequency stability transfert to the frequency comb

Target : $\sigma_{y}(\tau) \approx 8 \cdot 10^{-16}$

Ready to used scheduled to mid 2014

Compact cavity (CNES 45 keuros)

Design finished

Machining is started

Design of the vaccum chamber and thermal isolation started

Target : $\sigma_{v}(\tau) \approx 2 \cdot 10^{-15}$

First experiments on this cavity scheduled to beginning 2014

Silicon cavity (Région 70 keuros)

Design finished

Machining is started

Design of an ultra low vibrations cryocooler started

Target : $\sigma_{y}(\tau) \approx 3 \cdot 10^{-17}$

First experiments on this cavity scheduled to mid 2014

Deliver ultimate frequency stability

Test ULISS before and after travelling

3 hours extracted from the entire data set

- Quiet environment, nighttime
- Take away 3dB for two equal units
- - Λ -counter compensated: for flicker: $\sigma_{\Lambda}(\tau) \simeq 1.3 \times \sigma_{y}(\tau)$

Three-cornered hat

cofrac

WP METROLOGY

Equipment

No longer must the reference and DUT beat at the same frequency

Dual delay line X-band Bench

cofrac

WP METROLOGY

Equipment

No longer must the reference and DUT beat at the same frequency

Dual delay line X-band Bench

Environment tests

Frequency stability, phase noise and jitter are to be validated in real environmental conditions

Main concerns for industry and customers

- Electromagnetic compatibility
- Vibrations and shocks
- Temperature range, and thermal shocks
- Power supply
- Vacuum, and atmospheric pressure fluctuations
- Magnetic fields
- Aging
- Radiation

The Oscillator-IMP will do all this

(yet radiation tests rely on external collaborations)

Work Package: Time Scale

3 main goals:

- External 2-Way Satellite link with SYRTE
- Internal fiber link ENSMM-Observatory
- Time transfer with SYRTE via REFIMEVE+

The AM noise in a correlation system

Average cross-spectrum is used to reject the single-channel noise

Why we need a digital system under full control

- The effect of the DUT AM noise is fully (anti-)correlated
- Over- (under-) estimation of the DUT noise
- 12–15 dB spread has been reported

Budget, M€

	microwave photonics	0.57		
Phase 1 years 1-3	microwaves & RF	1.15		
	metrology & env testd	2.06		
	time scale	0.42		
	education and valorization	0.13		
	management	0.31		
	total phase 1	4.64	3.5	75%
Phase 2	6% of the investment for 8 years Contribution to running cost			
years 3-10	total phase 2	1.25	0.7	56%
	Grand total	5,89	4.2	71%
	requested		funded	

- ENSMM: 250 m2, one engineer position (scheduled)
- Region Franche-Comte: 1.5 M€ in 2012-13 (3X), 2014-15...

Completed: 25% of the platform