

UNIVERSITÉ **PARI**

london

Instrumental developments for measuring parity violation in cold chiral molecules using vibrational spectroscopy

M Pierens, L Lecordier, DBA Tran, M Manceau, A Cournol, R Santagata, B Argence, A Shelkovnikov, A Goncharov, O Lopez, C Daussy, C Chardonnet, M. Abgrall, Y Le Coq, R Le Targat, H Álvarez Martinez, WK Lee, D Xu, P-E Pottie, RJ Hendricks, TE Wall, J Bieniewska, BE Sauer, MR Tarbutt, A Amy-Klein, SK Tokunaga, B Darquié

Laboratoire de Physique des Lasers, CNRS-Univ Paris 13 LNE-SYRTE, Observatoire de Paris, CNRS-UPMC Univ Paris 6 Centre for Cold Matter, Imperial College London

AG 2018 LabEx FIRST TF, Toulouse, 9 October 2018

Precision measurements with molecules

Complementary to measurements in atoms for precision tests of fundamental physics:

measure constants	m_e/m_p (Schiller, Hilico/Karr, Ubachs, Koelemeij – HD ⁽⁺⁾ , H ₂ ⁽⁺⁾) k_B (Gianfrani, H ₂ ¹⁸ O, CO ₂ , C ₂ H ₂ - LPL, NH ₃),
measure their variations in time	α (J. Ye, OH) - m _e /m _p (De Natale, Maddaloni, CF ₃ H - Bethlem, NH ₃ - LPL, SF ₆)
test fundamental symmetries	parity & time-reversal symmetry (eEDM): Hinds (YbF), Cornell/Ye (HfH ⁺), DeMille/Doyle/Gabrielse (ThO) parity symmetry: D. DeMille (BaF), LPL (chiral species),
QED tests, 5 th force	W. Ubachs (H ₂ , HD ⁺),
test the symmetrization postulate	Tino, De Natale, $(O_3, CO_2, NH_3,)$

Many are based on high-resolution spectroscopy, often in the mid-infrared domain

<u>Require advanced manipulation techniques already demonstrated in atomic physics:</u>

- o control and cooling of internal and external degrees of freedom
- o individual hyperfine states addressability
- o state-selective high detection-sensitivity and -rate
- o high-resolution spectroscopy
- o long coherence times
- o chemical stability

Parity, a broken symmetry

the weak nuclear force violates parity

- predicted by Lee and Yang (1956)
- observed in nuclear and high-energy physics
- observed in atoms (Bouchiat, 1982; Wieman, 1997) effect $\propto Z^3$

never observed in chiral molecules

- probe the Standard Model and physics beyond it in the lowenergy regime
- \rightarrow enhanced effects $\propto Z^5$
- \rightarrow nuclear-spin dependent contributions, anapole moments, isotopic effects and neutron skin,...
- link to biomolecular homochirality
- evaluate relativistic quantum chemistry
- advanced manipulation techniques for polyatomic species

Parity violation in chiral molecules

several proposed experimental methods

• Lethokov's proposal (1975): vibrational spectroscopy (~30 THz)

- \rightarrow produce samples of 'better' molecules
- \rightarrow build a more sensitive machine

PV in chiral molecules: our strategy

Darquié et al, *Chirality* (2010) Saleh et al, *Phys. Chem. Chem. Phys.* (2013) Saleh et al, *Chirality* (2018)

PV in chiral molecules: our strategy

Challenges when working with such complicated molecules:

- 1. solids \rightarrow difficulty making intense sources in the gas phase (beams)
- 2. state-of-the-art CO₂ lasers typically used are not tuneable enough
- 3. direct detection of mid-IR laser absorption is not sensitive enough

A novel more sensitive machine

Frequency metrology approach:

molecular beam Ramsey interferometry

• more than 100 × better expected sensitivity: < 10⁻¹⁵

Buffer-gas-cooled molecular beam

Hutzler, Lu, Doyle, Chem. Rev. 112, 4803 (2012)

technique adapted to solid state species

for diatomics and light radicals, most intense cold molecular beam to date

- cold (4K)
- high flux (supersonic x 10)
- low velocity (supersonic ÷ 10)

 \rightarrow increase in resolution

... extend to new complex chiral species

Internationally advocated for precision measurements: J. Doyle (Harvard), D. DeMille (Yale), Ed Hinds (Imperial College), De Natale (LENS), G. Rempe (MPQ), J. Ye (JILA),...

Buffer-gas cooling of MTO

Imperial College London

- collaboration with M. Tarbutt and Ed Hinds at Imperial College
- we've taken a QCL to London
- tests in one of their cryogenic chamber

- MTO: methyltrioxorhenium achiral parent of chiral candidate species
- 1st organo-metallic species buffer-gas-cooled
- survives laser ablation!
- $T_{rot} = 6 \pm 3 K$
- very promising for buffer-gas beams production

Tokunaga et al, New J. Phys. (2017) Asselin et al, Phys. Chem. Chem. Phys. (2017)

Buffer-gas cooling polyatomic species

Precise spectroscopic measurements already possible

hyperfine structure partially resolved in isolated rovibrational transitions

 \rightarrow hyperfine parameters in the v=1 excited state eQg^{exc} = 716 (3) MHz

 \rightarrow unprecedented for such a complex species

Tokunaga et al, New J. Phys. (2017) Asselin et al, Phys. Chem. Chem. Phys. (2017)

QCL stabilization to a near-IR frequency reference

~10⁻¹⁴ (H-maser) ~10⁻¹⁶ potentially (Cs fountain)

SYRTE

oservatoire

vstèmes de Référence Temps-Espace

- ultimate QCL stabilities (0.06 Hz) and accuracies (sub-Hz)
- narrowest QCLs laser so far (0.2 Hz)

M Abgrall, Y Le Coq, R Le Targat, H Álvarez Martinez, W-K Lee, D Xu, P-E Pottie Chanteau et al, *New J. Phys.* (2013) Argence et al, *Nature Photon.* (2015) see also: Insero et al., *Sci. Rep.* (2017)

Ultra-precise spectroscopy with QCLs: record frequency uncertainties

~200 finesse 1.5-m long Fabry-Perot cavity

- ~25 kHz linewidth
- a few 10 Hz uncertainty
- state-of-the-art

in a multipass cell

- ~400 kHz linewidth
- a few kHz uncertainty
- 10²-10⁴ improvement compared to literature / HITRAN database

near-IR metrological level transferred to the mid-IR \Rightarrow 'atomic physics' types of precise measurements on molecules

QCL stabilization to a near-IR frequency reference

QCL stabilization to a near-IR frequency reference

Ultra-precise spect. with QCLs: spectral coverage/tuneability/resolution

~400 MHz, continuous tuning range (EOM)

Summary / Perspectives

- Development of a molecular beam setup for Ramsey interferometry of chiral species
- Molecule considered: organo-metallic species in the solid phase
- Buffer-gas-cooling of MTO/trioxane
- QCL based spectrometers with record stabilities and accuracies

- new techniques for measuring and controlling complex molecules

- of interest to a wide community \rightarrow testing physics with cold molecules, low temperature chemistry, spectroscopy, gas mixture analysis,...

• Perspectives: build the Ramsey interferometry machine,

⇒ buffer-gas-cooled beam, improve detection sensitivity using microwave detection (under progress), spectroscopy of chiral derivatives of MTO, the increase wavelength coverage, spectroscopy of other candidates, enantiomer-selective detection...

Imperial College London	J Bieniewska, T Wall, R Hendricks, B Sauer, M Tarbutt, Ed Hinds	
Systèmes de Référence Temps-Espace	M Abgrall, Y Le Coq, R Le Targat, H Álvarez Martinez, D Xu, WK Lee, PE Pottie	
UNIVERSITÉ DE RENNES	Jeanne Crassous, Nidal Saleh	
ENS DE LYON	Laure Guy	
UNIVERSITÉ TOULOUSE II PAUL SABATIEN Merrite	Trond Saue, Radovan Bast	
СТСР	Peter Schwerdtfeger	
MONARIS	Pierre Asselin, Pascale Soulard	
Thérèse Margul	e Huet, Laurent ès, Roman Motiyenko	

C

NCPChem (2011-2014), LIOM (2012-2014), PVCM (2016-2020), PSYCHe (2017-2019) DES ATOMES FROIDS AUX NANOSCIENCES

*** île**de**France**

