

Systèmes de Référence Temps-Espace

National and International Timescales : Construction and Dissemination

Michel ABGRALL Assemblée Générale FIRST-TF, October 21st-22nd 2021

Outline

UTC, TAI, SI

- LNE-SYRTE clock ensemble
- Atomic fountains
- UTC(OP) Timescale
- Time transfer techniques
- UTC(OP) dissemination

UTC, TAI, SI calculated by the BIPM

 UTC maintained close to UT1: |UTC – UT1| < 0,9 s UTC – TAI = - 37 s since January 1st 2017
UTC: « paper » timescale calculated for the previous month
NMI produce predictions of UTC: UTC(k)
UTC – UTC(k) published in the Circular T

The SI Second : an averaging of PSFS data provided by a few NMI

SYRTE atomic clock ensemble

Atomic fountain clocks

About 20 fountains in operation or under development (LNE-SYRTE, PTB, INRIM, NPL, VNIIFTRI, NRC, NIM, METAS, NIST, USNO, JPL, NICT, NMIJ, KRISS, AOS, NPLI, ...)

SYRTE Fountain performances

Fountain Stability Fountain Accuracy Uncertainty budget (x 10⁻¹⁶)

$\sigma_v(\tau=1s)$ at high atomic			
dénsities routinely			
over the past years			

FO1	3.3 x 10 ⁻¹⁴
FO2-Cs	3.5 x 10 ⁻¹⁴
FOM	6.0 x 10 ⁻¹⁴
FO2-Rb	3.2 x 10 ⁻¹⁴

	FO1	FO2-Cs	FOM	FO2-Rb
Quadratic Zeeman Shift	-1277.79 ± 0.40	-1937.02 ± 0.30	-314.42 ± 1.90	-3503.75 ± 0.7
BlackBody Radiation	169.97 ± 0.60	172.26 ± 0.80	166.50 ± 2.30	127.22 ± 1.45
Collisions and Cavity Pulling	131.95 ± 1.66	105.71 ± 1.06	20.60 ± 3.09	4.34 ± 1.26
Distributed Cavity Phase Shift	-0.07 ± 2.40	-0.9 ± 1.0	-0.7 ± 2.75	-0.35 ± 1.0
Microwave Lensing	-0.65 ± 0.65	-0.7 ± 0.7	$\textbf{-0.9}\pm0.9$	-0.7 ± 0.7
Spectral Purity and Leakage	<1.0	<0.5	<1.5	< 0.5
Ramsey & Rabi pulling	<0.2	<0.1	< 0.1	< 0.1
Second-Order Doppler Shift	< 0.1	< 0.1	< 0.1	< 0.1
Background Collisions	<0.3	<1.0	<1.0	<1.0
Total without Red Shift	-976.59 ± 3.25	-1660.65 ± 2.15	-128.92 ± 5.48	-3373.24 ± 2.63
Red Shift	$\textbf{-69.08} \pm 0.25$	-65.54 ± 0.25	$\textbf{-68.26} \pm 0.25$	-65.45 ± 0.25
Total with Red Shift	-1045.67 ± 3.3	-1726.19+/-2.2	-197.18 ± 5.5	-3438.69 ± 2.6

Long term stability of $\nu_{\text{Rb}}/\nu_{\text{Cs}}$ with dual FO2 over 6 months

Fountain Routine Operation:

•Differential measurement by varying the atomic density and extrapolate to 0 to evaluate cold collisions

•Sequential verification (every 1 h) of the Bfield and of the temperature in the interrogation zone

•Periodical verification of the DCP (Tilt, Asym1/Asym2)

•Periodical verification of perturbations on the interrogation signal

synchronous to the clock cycle

•Periodical verification of Bfield Map

•Periodical verification of light shifts

Contribution to the accuracy of TAI

- Fountain data analysis
- Automatic data processing and parameters monitoring
- Refined processing for final data analysis
- Fountain local comparison over synchronous operation
- Calibration of TAI by SYRTE fountains One report corresponds typically to a quasi continuous measurement of a H-maser frequency for 20 to 30 days $u_{B} \sim 2-6 \times 10^{-16}$ $u_{A} \sim 1-2 \times 10^{-16}$ $u_{link/maser} \sim 0.5-2 \times 10^{-16}$
- About 40-50 % of the calibration reports sent to the BIPM worldwide were provided by the SYRTE fountains over the past years, mainly by FO2-Cs and FO2-Rb (uptime of ~85%) with 11 to 14 reports per year

Initiation of a process for Including SFS with FO2-Rb included in the steering of TAI starting July 2013

- Same process applied for optical frequency standards (up to now SYRTE, NICT, NIST, INRIM, NMIJ, KRISS)
- An important step towards a possible future redefinition of the SI second based on optical frequency standards

Graphical representation of all evaluations of Primary and Secondary Frequency Standards reported since Circular T 190 Enhanced color dots indicate evaluations carried out within the month of TAI computation

Realization of the French Timescale UTC(OP)

- Universal Coordinated Time realized at Observatoire de Paris
- Real time representation of UTC for France
- Base for Legal time in France

Autonomous time reference over 30/40 d relying only on LNE-SYRTE facilities
Real contribution to international timekeeping (/GPS time, etc..)

Pivot for French contributions to international timescales (PSFS, commercial clocks)
Time reference provided to French laboratories and to society

Accuracy, stability and reliability mandatory

➤Combines the operation continuity of commercial clocks (H-masers) and the stability and accuracy of atomic fountains

Steering algorithm

H-Maser prediction

mjd

New method based on a steered hydrogen maser since October 2012

 Automatic data processing for fountain monitoring (hourly) providing daily frequency calibrations of our 5
H-Masers by the 4 fountains at the low 10⁻¹⁵ level

Daily main steering using a linear fit of the fountain calibrations over the past 5 days updated automatically

Additional steering of a few 10⁻¹⁶ towards UTC updated monthly using the last available *Circular T* compensating for:

- ■The slope of UTC(OP) UTC
- Half of the phase difference over the following month

UTC(OP) Performances

- UTC(OP) is one of the best real time realizations of UTC
- > Departure of a few ns since the implementation of the new method
- Approaching the uncertainty of the time transfer links

Redundant timescales

Calibration of each maser against each fountain available in real time

 Two nominal timescales based on two H-Masers using new 100 MHz frequency offset generators and a switch

A complete second similar system using two other H-Masers for additional redundancy and experiments

Two other timescales with older micro-phase stepper

- Simulations and experiments for improving the steering algorithm
- Combination of H-Masers
- Tests using calibrations from optical clocks

Time Transfer Techniques

Two Way Satellite Time and Frequency Transfer (TWSTFT)

- Satre Modems, Frequency up/down conversion to the Ku band, Geostationary satellite
- 2 stations (EU/USA, EU/ASIA + experiments)
- Satellite simulator for accessing the stability of the internal delays
- TWSDR : Emission using Satre Modem, Reception using SDR
- TWSDR traveling equipment for link calibration
- ✓ Accuracy 1-2 ns
- Developments: TWCP/Broadband TW/TWSDR

GNSS (GPS/GALILEO/GLONASS/BEIDOU)

- About 10 receivers from different manufacturers (multi channels, multi frequency, multi GNSS)
- Main station OPMT/OPM2 being replaced by a new station OP73/OP75
- Geodetic station
- Traveling equipment for relative calibration (OP72/OP74)
- Group1 lab (OP, PTB, ROA in EU) for the relative calibration of GNSS stations (GPS+GALILEO) of TAI labs
- ✓ Accuracy 1-3 ns
- Experiments on absolute calibration of GNSS receivers
- > First experiments using GALILEO signals, BEIDOU in near future
- TWSDR/GPS PPP: main time transfer for TAI contributions
- TWSTFT and GPS as backups

Contributions to GALILEO:

- UTC(OP) included in the steering of GST (OP, PTB, ROA, SP, INRIM): time transfer data provided daily
- Relative calibration of GPS stations of the PTFs and of the participating labs

Multi-techniques comparisons: PPP, iPPP, TWCP, TW broadband, TWSDR, T2L2, Ajisai, Fiber networks

Dissemination of UTC(OP)

EGNOS: European Geostationary Navigation Overlay System

- Plane navigation
- RIMS-PAR connected to UTC(OP): ENT-UTC, ENT-UTC(OP) in real time
- Preparation for the implementation of EGNOS V3

GPS CV comparisons to 12 French laboratories

- Observatories: OCA, OB, ON
- National institutions: CNES, DGA (2 centers), the French navy
- Industry: Orange (3 centers), Spectracom Orolia, Keysight Technologies Time difference to UTC(OP) available daily (accuracy 2-10 ns) GPS PPP using NRCAN software with OB, OCA, CNES (H-Masers)

SYREF System, operated by OB, referenced to UTC(OP) for frequency calibrations in ~10 other labs

Temps Atomique Français TA(F)

- •« Paper » timescale TA(F) computed monthly from 20-30 industrial clocks (9 French labs)
- •Weighted averaging of clock data based on ARIMA
- •Frequency steering using fountain calibrations
- •Collected clock (Cesiums and H-Masers) data also sent to the BIPM and included in EAL computation
- Ongoing study to include H-Masers in TA(F) computation

Dissemination of UTC(OP)

Speaking clock : 3699

- Since 1933...
- 4 redundant systems referenced to UTC(OP) or cesium beams
- Dissemination by Orange network
- Accuracy 50 ms (analogic network)

Network Time Protocol (NTP)

- 2 Stratum 1 servers referenced to UTC(OP)
- Stratum 2 servers available to the public (~1E6 query/h)
- Uncertainty ~10 ms depending on the network characteristics

ALS162 Signal (162 kHz) Former name « France-Inter grandes ondes »

- Collaboration with ANFR, TDF, FH, LTFB, SYRTE
- 2 Cesium beams connected via GPS CV to UTC(OP)
- ~1 MW emitter located in Allouis, in the center of France
- Accuracy : ~10⁻¹² with the carrier; ~1 ms with the code

SCPTime (Secure Certified Precise Time)

- Dvpt. initiated in 2014 by Gorgy Timing, Syrlinks, Muquans, Eolas, Tronics, Tyleos OP, OB, LNE, ...
- NTP/PTP + distribution and supervision system for certification
- Main servers in operation at OP since mid 2018
- Operational activity since beginning of 2021 (contract OP-SCPTime)

White rabbit in collaboration with FOP

Bulletin H published monthly summarizing the main results

24h/24 & 7d/7 Operation, Quality management system (ISO 17025), Service Level Agreement

Prospects

Timescales

- UTC(OP) steering algorithm currently close to the optimum
- Combination of H-Masers (UTC(OP) and TA(F))
- Tests using calibrations from optical clocks
- UTC and UTC(k) will gradually with optical clocks
- Time and frequency transfers
 - Distant comparisons using satellite T&F transfer techniques (TW-CP, TW SDR, GPS IPPP, GALILEO and other GNSS), absolute and relative calibrations
 - Comparisons/dissemination via T-REFIMEVE, at National and European scale, via phase coherent optical fiber links, advanced time transfer, White Rabbit
 - Multi techniques comparisons
- Atomic fountains
 - Contributions to the realization of the international time references TAI, SI, UTC
 - Continuous calibrations for the steering of UTC(OP)
 - Investigations on the microwave lensing expected to be 7 x 10⁻¹⁷ never observed
- Optical clocks and oscillators
 - Characterization of the future ultra stable microwave reference generated from an optical frequency comb referenced to an ultra stable laser as a redundancy for the cryogenic sapphire oscillator
 - Absolute frequency measurement of optical secondary representation of the second (locally, remotely and via TAI) in the frame of the redefinition of the SI second in 2026
- Fundamental physics tests (stability of fundamental constants and gravitation, search of dark matter, ...)
- Contributing to ACES mission
 - with high performance clocks part of SYRTE ground segment
 - for providing the best possible time reference for the ACES MWL

Systèmes de Référence Temps-Espace

Thank you !