

Télémétrie laser haute cadence sur cibles passives pour le transfert de temps sol-sol

<u>Clément COURDE¹</u>, Julien CHABE¹, Grégoire MARTINOT-LAGARDE¹, Duy-Hà PHUNG¹, Mourad AIMAR¹, Nicolas MAURICE¹, Hervé MARIEY¹, Nils RAYMOND¹, Julien SCARIOT¹, Hervé VIOT¹, Gilles METRIS¹, Michel ABGRALL², Daniele ROVERA²

AG Labex First

Octobre 202

¹ Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, IRD, Géoazur
² SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE

Context Ground-Space Laser links for probing the close universe

Precise metrological links between space bodies (<cm et ps):

- Relativistic ephemeris versus Observations
- Information on forces acting on the bodies (external and internal)
- Reference frame for space (geodesy) and Time
- This a traditional task for astronomers (ITRF, UTC, BIPM...)
- Fundamental physics testing (Gravitational red-shift, Lense– Thirring, ...)

SLR Principle vs Time transfer

Measurement of the time of flight of laser pulses

AZU

Common view and non common view Ground to ground time transfer

Common View

No noise added from the onboard oscillator

Non common View

Noise added from the onboard oscillator when the satellite is not visible by any station

Space missions

T2L2 results

10 ps stability @ 1000 s for Ground-Space & Ground-Ground time transfer

Uncertainty at 150 ps E. Samain et al., 2015, Metrologia

Agreement between T2L2 and GPS-CV better than 240 ps P. Exertier et al. 2016, Metrologia

Agreement between T2L2 and IPPP in common view with a standard deviation below 100 ps J. Leute et al. 2018

Impact of the SAA on the USO frequency behaviour A. Belli et al., Advanced in spaces research, 2015

Agreement between T2L2 and GPS PPP in non common view at 1 ns level

E. Samain et al., 2018, IEEE transactions on ultrasonics, ferroelectrics, and frequency control

Shutdown in 2014

Perspectives : ACES with MWL & ELT : 2024 ?

And in the meantime ?

Time transfer by laser links thanks to diffuse reflections

Liu, T., Eckl, J. J., Steindorfer, M., Wang, P., & Schreiber, K. U. (2021). Accurate ground to ground laser time transfer by diffuse reflections from tumbling space debris objects. *Metrologia* Each station performs two-way ranging to the rocket body. In addition to that, each station performs one-way detection of the laser pulses from another stations.

The use of two distinct wavelengths allows to satisfy the single-photon level of the detection.

Time transfer demonstration on a rocket body between Wettzell and Graz with 1 σ statistical uncertainty of 3 ns.

Advantage : a long term and fully passive space segment Limitations : works only for common view, needs of a better target model

Time transfer by laser links thanks to diffuse & specular reflections

Kucharski, D., et al. . (2019). Hypertemporal photometric measurement of spaceborne mi specular reflectivity for Laser Time Transfer ілк тооеі. Advances in Space Research, 64(4), 957-963.

Ajisai can be used as a well modelled target which allow to exploit both diffuse & specular reflections thanks to its mirrors & corner cubes.

Due to the **rotation of Ajisai**, the simulation study indicates that the Common View between two distant stations is possible **874** times per pass with **time slot** duration **of 9.15 ms** in mean, in **single-photon** mode.

=> High Count Rate laser ranging required

Works in progress at Geoazur-MeO

High repetition rate SPAD

AZU

Collaboration in 2014 with And with the support of the

Development of two high repetition rate SPAD detections

Si-SPAD		InGaAs-SPAD	
Active area diameter	100 µm	Active area diameter	50 µm
Max repetition rate	1 MHz	Max repetition rate	100 kHz
Timing jitter	33 ps FWHM	Timing jitter	76 ps FWHM
DCR @ 7 V	74 Hz	DCR @ 7 V	200 kHz
Quantum efficiency	53% @ 532 nm	Quantum efficiency	47% @ 1064 nm

Works in progress at Geoazur-MeO

Reception of a Coherent HyperRapid laser in 2020

With the support of

100 W

Adjustable pulse repetition rate between 400 kHz to 4 MHz

Works in progress at Geoazur-MéO

First measurements on Ajisai, Lares, Lageos, Galileo during night/day light @ 4kHz

12

Works in progress at Geoazur-MéO

A lot of information in the return structure thanks to high count rate laser ranging

Figure 4.4.2.1-8. Reference and random orientation satellite returns using annulus.

From D Dequal et al., ILRS workshop 2019, 100 kHz on Lageos

Works in progress at Geoazur-MéO

AZU

Attitude determination of space debris and satellites R&T CNES

Schedule :

- Calibration of the GNSS links with the support of OP-SYRTE Nov 21
- Calibration of the laser links Nov 2021
- Common view observations with Wettzell firing in infrared and Grasse in green with the LLR lasers Nov 2021
- Common view observations with Wettzell firing in infrared and Grasse in green with the high count rate lasers 2022

- Implementation of the new prediction calculation
 - Lock-in of the rotating mirror on the time scale and synchronization of the LLR firing date

FIRST

F

Thanks for your attention

