Improvements to the IPPP toolbox

A. Baudiquez, B. Chupin, G. Petit, G. Tagliaferro, P. Uhrich, F. Meynadier

Bureau
International des
Poids et
Mesures

SYstèmes de Référence Temps-Espace

SYRTE l'Observatoire PSL

Exploring the Core of IPPP Advancements

Understanding IPPP Refines PPP by resolving carrier-phase ambiguities to integers, enhancing time accuracy. IPPP Toolbox Enhancement Details front-end refinements for result display, back-end bug fixes, and adaptability for external users. Outlines methods for detecting phase jumps to

Phase Jump Detection

Outlines methods for detecting phase jumps to maintain the integrity of time transfer.

Future Implementations and Collaborations

Bureau
International des
Poids et
Mesures

Explores Galileo integration and enhanced compatibility with OP, alongside IPPP solution comparisons across various software solutions.

Introduction to IPPP & Distinctions from PPP

- IPPP refines PPP by resolving phase ambiguities as integers.
- Enhances time transfer
 stability, reducing long-term
 noise.
- Achieves frequency transfer sub 1e-16 accuracy after one week (*Petit, G. (2021). Sub-10–16* accuracy GNSS frequency transfer with IPPP)

2023 January – March: 90 days

Introduction to IPPP & Distinctions from PPP

- IPPP refines PPP by resolving phase ambiguities as integers.
- Enhances time transfer stability, reducing long-term noise.
- Achieves frequency transfer sub 1e-16 accuracy after one week (*Petit, G. (2021). Sub-10–16* accuracy GNSS frequency transfer with IPPP)

2023 January – March: 90 days

Introduction to IPPP & Distinctions from PPP

- IPPP refines PPP by resolving phase ambiguities as integers.
- Enhances time transfer stability, reducing long-term noise.
- Achieves frequency transfer sub 1e-16 accuracy after one week (*Petit, G. (2021). Sub-10–16* accuracy GNSS frequency transfer with *IPPP*)

Processing and Practical Application of IPPP

- N_w: widelane integer ambiguity
- f: Melbourne-Wübbena linear combination
- P₁, P₂: pseudorange
- L₁, L₂: phase measurements
- μ_i: widelane biases for receiver i (solved together with N_w)
- μ^j: widelane biases for satellite j (taken from the GRG products)

Processing and Practical Application of IPPP

• c: velocity of light

- T_c: coordinate time of propagation of the signal (including all delays)
- Δh: clock difference (station-satellite)
- L₁, L₂: phase measurements (in cycles)
- λ_i : wavelengths
- $\lambda_c = (\gamma \lambda_1 \lambda_2)/(\gamma 1)$ with $\gamma = (\lambda_2 / \lambda_1)$ (1.647 for GPS, 1.793 for Galileo)
- W: wind-up effect (in meters)

Bureau International des Poids et Mesures

2023 May: 30 days

Local server

- HTML plot enhanced with GSL
- Interacting analysis (zoom, reset and remove period output file)

Link analysis - PTBB_OP73

Bureau
International des
Poids et
Mesures

Phase Jump Detection

Kalman filter algorithm

$$\widehat{X}[n|n-1] = \boldsymbol{\Phi}[n|n-1]\widehat{X}[n|n-1]$$
$$\boldsymbol{\Gamma}[n|n-1] = \boldsymbol{\Phi}[n|n-1]\boldsymbol{\Gamma}[n|n-1] \boldsymbol{\Phi}^{T}[n|n-1] + \boldsymbol{Q}$$

$$\boldsymbol{\nu}[n] = \boldsymbol{Z}[n|n-1] - \boldsymbol{H}\widehat{\boldsymbol{X}}[n]$$
$$\boldsymbol{\sigma}_{\nu}^{2}[n] = \boldsymbol{H}\boldsymbol{\Gamma}[n|n-1]\boldsymbol{H}^{T} + \boldsymbol{R}$$
$$\boldsymbol{K}[n] = \boldsymbol{\Gamma}[n|n-1]\boldsymbol{H}^{T}(\boldsymbol{\sigma}_{\nu}^{2}[n])^{-1}$$

 $\widehat{X}[n|n] = \widehat{X}[n|n-1] + \mathbf{K}[n]\mathbf{\nu}[n]$ $\mathbf{\Gamma}[n|n] = (\mathbf{1} - \mathbf{K}[n]\mathbf{H})\mathbf{\Gamma}[n|n-1]$

Bureau International des

Poids et

- \widehat{X} : state estimate
- *I*: covariance estimate
- $\boldsymbol{\nu}$: innovation
- σ_{ν}^{2} : innovation covariance
- K: Kalman gain
- τ : sampling time with $n = t / \tau$
- **\boldsymbol{\Phi}**: transition matrix
- *H*: observation model
- **R**: measurement noise (phase noise)
- **Q**: state equation noise (WFN, RWFN, drift)

Phase Jump Detection

Bureau International des Poids et

Mesures

More details at: https://theses.hal.science/tel-04083649

Future Implementations and Collaborations

Future implementations

Implementation of Galileo and operational deployment at OP

Collaborations

Comparison of IPPP solutions with fiber links and alternative software from ROB and NRC

Objective

Software usable by other entities

