Vers une spectroscopie moléculaire ultrarésolue et traçable au système international d'unités (SI) dans l'infrarouge moyen C. Janssen, M. Abgrall, H. Alvarez-Martinez, A. Amy-Klein, B. Argence, N. Cahuzac, E. Cantin, B. Darquié, H. Elandaloussi, L. Hilico, J.-P. Karr, R. Le Targat, M. Leuliet, Y. Liu, L. Lorini, O. Lopez, M. Manceau, P. Marie-Jeanne, M. Mazouth, A. Mbardi, B. Pointard, P.-E. Pottie, C. Rouillé, M. Saffre, M. Tønnes, T. Zanon-Willette

LERMA, Paris, France LKB, Paris, France LPL, Villetaneuse, France **LNE-SYRTE**, Paris, France

MIR spectral region

MIR : molecular fingerprint region

line intensity / cm molecule⁻¹

Source : HITRAN 2022

Nov 9, 2023

Different motivations

Improve molecular data bases

- \rightarrow Detect and uniquely identify molecules in remote environments
- Improve measurement accuracy, \rightarrow and assure SI traceability for critical species (GHG, polluants)

Saturated Absorption Spectroscopy

High resolution for high precision

Technical limitations Laser width and stability \rightarrow Ultrastable laser source

Nice

	Physical limitat	ions	
	Direct absorption	on	Laser
	Thermal broadening	g (Gaussian)	
	Doppler effect Δv ~	100 MHz	pump
λ	Saturated abso	orption	aser
	Coll./transit broade	ning (Lorentziar	n)
	Pressure effect	Δv ~ 100 kHz (1 F	Pa)
	Transit broadening	Δv ~ 100 kHz (1 n Δv ~ 10 kHz (1 cn	רm) ר)
TUU	Power broadening	$\Delta \nu = \Delta \nu_0 \sqrt{1+S}$	$\simeq \sqrt{2}\Delta\nu_0$

REFIMEVE: SI traceable frequency reference

Dissemination of ultrastable frequency reference via fibre network

- Piloting institutions: LNE-SYRTE & LPL
- Link to nat. frequency standard (LNE-SYRTE)
- Users: Research Institutions
- Distribution by French academic research network RENATER using dedicated repeater stations
- Link to NML of neighbouring countries
- 2 signals:
 - Optical (main) signal: 1.55 µm (< 10⁻¹⁵ @ 1s)
 - RF signal (Paris area): 100 MHz (10⁻¹⁴ @ 1s)

SI traceable MIR QCLs linked to atomic clocks

SI traceable MIR QCLs locked to OFC

Stabilisation scheme allows

- < 10^{-15} rel. frequency stability (0.1-10 s)
- SI traceable *f* uncertainty $< 10^{-14}$ (1s)

Setup @ LERMA

Study of selected O₃ lines @ LERMA

Study of selected O₃ lines @ LERMA

Line (Јқа,қс ← Јқа,қс)	Pos / cm ⁻¹ (HITRAN)	Pos / MHz (TW) u = 0.05 MHz	Pos / MHz (HITRAN) u = 3-30 MHz	Diff. (HIT T
V (19 _{13,6} ← 18 _{13,5})	1048.673642	31 438 444.717	31 438 444.9	
W (9 _{2,7} ← 8 _{2,6})	1049.029700	31 449 119.145	31 449 119.2	
X (9 _{9,9} ← 8 _{9,8})	1049.032171	31 449 193.254	31 449 193.3	
Y (16 _{10,7} ← 15 _{10,6})	1049.033936	31 449 246.076	31 449 246.2	
Z (10 _{3,8} ← 9 _{3,7})	1049.447882	31 461 655.885	31 461 656.0	

- If significant (slight blue-shift in HITRAN) of about 0.1 MHz
- Line positions (strong lines of v₃ fundamental band) seem much more reliable than 3-30 MHz uncertainty range
- Uncertainty (50 kHz ~ 2 10-9) due to unexplained variability in line position determinations.

SI traceable MIR QCLs locked to OFC

Stabilisation scheme allows

- < 10^{-15} rel. frequency stability (0.1-10 s)
- SI traceable *f* uncertainty $< 10^{-14}$ (1s)

Ultra-precise QCL-based MIR spectroscopy at LPL

Saturated absorption spectroscopy of CH₃OH

- abundant interstellar and protostellar molecule
- abundant organic molecule in atmosphere (leads to production of ozone)
- sensitive to variations of m_e/m_p

Record uncertainties @ LPL

P(*E*,co,0,2,33) line

29 132 715 074.3 (7.4) kHz @ zero-power, zero pressure

	Uncertainty (kHz)
	< 0.0003
7) 2017)	1.4
	1
ed <5 kHz	5
	5
	7.3
	1.1
	7.4

- Record uncertainty on methanol line positions
- Rel frequency stability : 3.8 10⁻¹¹ (stat)
- Total relative uncertainty : 2.5 10⁻¹⁰
- FPC leads to ~10 times reduced systematic uncertainty

Spectral coverage and tuneability @ LPL

- Longest continuous single scan tuning (1.5 GHz)
- Shift wrt to HITRAN database (blue sticks) is evident
- Database incomplete
- Fine structure can be revealed

Resonance Enhanced Multiphoton Dissociation spectroscopy of H₂⁺@ LKB

Resonance Enhanced Multiphoton Dissociation spectroscopy of H₂+ @ LKB

HCOOH at 9.17 µm as accuracy test @ LKB

Conclusions

- Development and setup of ultrastable SI-traceable MIR spectrometers for ultra-high resolution molecular spectroscopy
- New and original measurements of ozone, methanol and formic acid line positions around 10 µm have been presented
- > Achieved line centre uncertainties are in the 10^{-9} to $< 10^{-12}$ range
- Data can serve as unique benchmarks for molecular calculations
- and further development/measurements will constrain fundamental constants

Perspectives

@ LKB

→ Fundamental constant **measurement** (m_e/m_p) using MIR (9.17 μ m) spectroscopy of H₂⁺

@ LERMA

Fundamental ozone molecular line shape and parameter measurements $(v_0, \gamma, \delta, \delta)$

- **S, ...)** in the MIR for
- unifying spectroscopic data between UV and IR

investigating isotope dependencies

extending spectral coverage

sub-kHz (10⁻¹¹) target uncertainty

