Progress on an Yb-based active optical atomic clock Martina Matusko

ECHNOLOGIES

Yb° E2

Passive atomic clocks

Idea for an active (optical) atomic clocks

Collective effects in atomic radiation

Two close atoms d « $\,\lambda$

M. Gross at al. Physics reports 93 (5), 301-396 (1982)

Collective effects in atomic radiation N close atoms d « λ

M. Gross at al. Physics reports 93 (5), 301-396 (1982)

Cavity superradiance

Collective strong-coupling regime Ω² » κΓ \rightarrow superradiance

Bad–cavity regime κ»Γ

Standard laser: frequency stability from cavity

good cavity regime: $\kappa \ll \Gamma_{\sigma}$ cavity mode gain profile $\omega_{\rm L}$ ω

Superradiant laser: frequency stability from atoms

E. Bohr (2023). Exploring superradiance for enhanced sensors [PhD Thesis, Niels Bohr Institute]

ω

FEMTO-ST superradiant active optical atomic clock

FEMTO-ST superradiant active optical atomic clock

- $\succ \Gamma ({}^{1}S_{0} \rightarrow {}^{3}P_{0}): 7 \text{ mHz}$
- ➢ K (cavity): 500 kHz

Optical transport

Local ultra-stable frequency dissemination

Review of Scientific Instruments

номе	BROWSE COLLEC	TIONS \sim PUBLISH WITH US \sim ABOUT \sim
Volume 94, Issue 3 March 2023		RESEARCH ARTICLE MARCH 29 2023 Fully digital platform for local ultra-stable optical frequency
		Clistribution ⊙ Martina Matusko ◎ ; Ivan Ryger ◎ ; Gwenhaël Goavec-Merou ◎ ; Jacques Millo ◎ ; Clément Lacroûte ◎ ; Émile Carry ◎ ; Jean-Michel Friedt ◎ ; Marion Delehaye ■ ◎ Check for updates + Author & Article Information Rev. Sci. Instrum. 94, 034716 (2023) https://doi.org/10.1063/5.0138599
de Palasera	An Sa Amerik K (1992) (2012) avgett (1992) (2013) (2014)	🖶 Split-Screen = Views \lor [] PDF $\propto_{ m C}^{ m O}$ Share \lor 원 Tools \lor

https://doi.org/10.1063/5.0138599

 \blacktriangleright frequency instability averaging down to 6 \times 10⁻¹⁹ for 2000 s integration time

Conclusion

- ✓ Doppler-free spectroscopy for the green laser frequency stabilization
- ✓ Realizing cold atom ensemble
- ✓ Designing the two-site loading for the optical transport
- ✓ Fully digital setup for local ultra-stable frequency distribution with a novel characterization method
- ✓ Tunable length Fabry-Perot cavity assembly

Next steps

- Performing optical transport designed for two-site loading for continuous atom reloading
- Coupling atoms to the cavity
- Obtaining superradiant pulses at the cavity output
- Repumping scheme for extended pulse duration
- > Continuous superradiant signal at the cavity output

The superradiant team

Delehaye

Sebastian Ponciano Ojeda

Hauden

Martina Matusko

Jana El Badawi

REGION

BOURGOGNE

FRANCHE

COMTE

Thank you for your attention!

Iodine spectroscopy

Iodine spectroscopy

selection ightarrow sharp absorption signal

Local ultra-stable frequency dissemination

17

Passive atomic clock cycle scheme

Passive atomic clocks

