

Horloges à atomes froids industrielles

Assemblée Générale 2017 de FIRST-TF

Institut d'Optique d'Aquitaine, Talence

Bruno Pelle, Bruno Desruelle – Muquans

Ramon Szmuk, David Holleville – SYRTE

June 9, 2017

- Created in 2011
- Located at Institut d'Optique d'Aquitaine
 - Strong support from local & national public authorities
 - A unique scientific and technical environment
- 23 employees (10 PhDs)
- Main products:
 - Absolute Quantum Gravimeter: AQG
 - High Performance Cold Atom Clock: MuClock
 - High Stability Fiber links: Refimeve
 - Custom Scientific Lasers

Outline

1. Working Principles

- 2. Recent Results
 - 1. MuClock 00
 - 2. Comparison Rubiclock/MuClock 00
- 3. Muclock Target Specifications

Step 1: isotropic light cooling. $N_{\rm at} \sim 10^7$ in detection column.

Step 1: isotropic light cooling. $N_{\rm at} \sim 10^7$ in detection column.

Step 2: microwave interrogation while the atoms are free falling in the cavity. $T_{\rm R} \sim 40$ ms.

$$F = 2$$

$$-\frac{2}{-1} \quad \uparrow$$

$$6 834 682 610.904 29 Hz$$

$$F = 1$$

$$-1 \quad 0$$

$$0 \quad 700 \text{ kHz/G}$$

- Compact design
- Recaptured atoms

Step 1: isotropic light cooling. $N_{\rm at} \sim 10^7$ in detection column.

Step 2: microwave interrogation while the atoms are free falling in the cavity. $T_{\rm R} \sim 40$ ms.

Step 3: detection of the absorption on the cooling transition. Only one state (F = 2) is detected.

High repetition rate (10 Hz)

Outline

1. Working Principles

2. Recent Results

- 1. MuClock 00
- 2. Comparison Rubiclock/MuClock 00
- 3. Muclock Target Specifications

MuClock:

- Similar principle as Rubiclock full re-design
- Fully assembled Fully automated
- Dedicated for continuous long-term operation

MuClock 00:

Almost shot-noise limited detection

Rubiclock

Detection noise measured after cooling (with no MW-Pi/2) 10⁴ Shot to shot number fluctuations Sigma_N -Measure $\Delta N = \sqrt{\langle N \rangle}$ sqrt(Nat) 0.0004*Nat $SNR = \sqrt{\langle N \rangle}$ Noise floor Quadratic sum (no sqrt) Atom number noise, Quadratic sum 10³ 10³ 10⁴ 10⁵ 10⁷ Mean atom number Atom number, N_{at}

MuClock 00

• MuClock 00:

Lock on Ramsey fringes: C = 64%

- Comparison Rubiclock/MuClock 00:
 - Central fringe noise

$$T_R = 40 \text{ ms} - FWHM = 12.5 \text{ Hz}$$

- Comparison Rubiclock/MuClock 00:
 - Dick effect limited measurement

- Comparison Rubiclock/MuClock 00:
 - Short-term stability at SYRTE

atomic fountains

- Comparison Rubiclock/MuClock 00:
 - Short-term stability at SYRTE

First measurement: less than a month at SYRTE

- Study on Rubiclock/MuClock00:
 - Long-term stability at SYRTE
 - Under evaluation:
 - Magnetic field stability
 - Cavity pulling
 - Cavity's phase gradients

• Summary:

Rubiclock	MuClock 00
Less atoms: ⇒ Detection limited by QPN	More atoms: ⇒ Better SNR ⇒ More sensitive to technical noise
Short-term stability: Maximum performances reached	Short-term stability: ⇒ Comparable to Rubiclock ⇒ Upgrades on Dick effect expected (in progress) ⇒ Possible upgrades on technical noise (mid-term)
Long-term stability/accuracy: ⇒ Still under evaluation	Long-term stability/accuracy: ⇒ Compared to Rubiclock

Outline

- 1. Working Principles
- 2. Recent Results
 - 1. MuClock 00
 - 2. Comparison Rubiclock/MuClock 00
- 3. Muclock Target Specifications

Muclock Target Specifications

Stability:

Averaging time (s)	Relative ADEV
1	< 3.0E-13
10	< 9.5E-14
100	< 3.0E-14
1000	< 9.5E-15
10000	< 3.0E-15
86400 (1 day)	< 1.0E-15

< 0.1 ns in a day

Accuracy and other specs:

Accuracy	better than 5.0E-15
Long term behavior	flicker floor < 1.0E-15
Lifetime	10 years
Volume	155x55x80 cm ³
Mass	135 kg
Power consumption	< 250 W

Conclusion

 We have developed a high performance atomic clock based on laser cooled atoms

- Short term stability in the low 10^{-13} : work in progress
- Long term stability in the low 10^{-15} : work in progress
- Accuracy in the 10^{-15} : work in progress

Industrial approach for all the components
 => high reliability, ease of use

Muguans

Acknowledgments

Systèmes de Référence Temps-Espace

Great Collaboration with SYRTE

- R. Szmuk
- D. Holleville
- A. Landragin
- N. Dimarcq
- Many more people at SYRTE...

Support by CNES

- F.-X. Esnault
- J. Delporte

Support by ESA

P. Waller

Great team at Muquans!

Thank you for your attention

Rubiclock

- RubiClock (operated by J.-F. Schaff and R. Szmuk):
 - Research project in collaboration between SYRTE and Muquans
 - Demonstration of principle 0g-flights

