Tests de physique fondamentale

Recherche sur les Atomes Froids

C. Salomon Laboratoire Kastler Brossel

Ecole Normale Supérieure, Paris, France La seconde atomique a 50 ans Observatoire de Paris, 13 octobre 2017

Le temps existe-t-il ?

A la suite des travaux de Minkovski, Poincaré, Lorentz la réponse d'Einstein est: Non ! L'espace et le temps forment un bloc indissociable avec quatre dimensions, 3 d'espace et une de temps

Cet Espace-Temps est déformé continûment par la matière. L'ensemble Espace-Temps-Matière-Energie est décrit par les équations de la relativité générale (1915)

Une horloge: une réalisation locale du temps propre

Chaque observateur muni d'une horloge locale peut mesurer des intervalles de temps. Ces intervalles peuvent être comparés à ceux d'une autre horloge dans un champ de gravitation différent, et généralement ne donneront pas le même intervalle de temps. Il y a donc autant de temps que d'observateurs !

Le temps et son inverse, la fréquence, sont les quantités physiques qui peuvent être mesurées avec la plus grande précision. Toutes les unités de mesure peuvent se ramener à des mesures de fréquence

Never measure anything but frequency !

Le conseil d'Arthur Schawlow à ses étudiants à Stanford Prix Nobel 1981

Et au-delà de la relativité ?

- Unifier théorie quantique et relativité
- Théorie des cordes, initiée par G. Veneziano en 1968, développée depuis par de nombreux théoriciens, et étendue aux membranes, dites « branes ».
- Particules remplacées par des « cordes » élastiques, quantifiées.
- Cosmologie

Damour, Polyakov,

Nouvelles particules ? exemple du dilaton:

- Evolution temporelle des constantes fondamentales, qui peut être testée avec des horloges
- Violation du principe d'équivalence: microscope
- Recherche de matière noire

mais si le temps universel n'existe pas, pourquoi fabriquer tant d'horloges aujourd'hui ?

1989: N. Ramsey, W. Paul, H. Dehmelt Separated oscillatory fields method for atomic clocks, ion trap techniques

2005: J. Hall, T. Haensch, R. Glauber Laser precision spectroscopy Optical frequency comb Quantum optics

S. Chu, C. Cohen-Tannoudji, W. Phillips 1997: Laser manipulation of atoms

2012: S. Haroche, D. Wineland Control of individual quantum objects Photons and atoms

Définition de la seconde fontaine à atomes de césium

Prix

Résonance de Ramsey

Variabilité des constantes fondamentales ?

Motivation: théories d'unification,... Veneziano, Damour, Polyakov, Marciano,....

 $\alpha_{elm}, m_e/m_p...$

Principe : Comparer deux ou plusieurs horloges de nature différente en fonction du temps

Horloge micro-onde/micro-onde: α , m_e/m_p , $g^{(i)}$ rubidium and cesium

Micro-onde / Optique : α , m_e/m_p , $g^{(i)}$

Optique / Optique: α

The ovens and electrodes of the NPL strontium ion end-cap trap.

SYRTE Comparison between Rubidium and Cesium Hyperfine Structure over ~ 18 years

• With QED calculations:

J. Prestage, et al., PRL (1995), V. Dzuba, et al., PRA (1999)

$$\frac{d}{dt}\ln(\frac{g_{Rb}}{g_{Cs}}\alpha^{-0.49}) = (-1.07 \pm 0.49) \times 10^{-16} \, yr^{-1}$$

• With QCD calculations:

T.H. Dinh et al., PRA79 (2009)

$$\frac{d}{dt} \ln[\alpha^{-0.49} (m_q / \Lambda_{QCD})^{-0.021}] = (-1.07 \pm 0.49) \times 10^{-16} \, yr^{-1}$$

SYRTE Comparison between Rubidium and Cesium Hyperfine Structure over ~ 18 years

Weighted least square fit to a line $\frac{d}{dt}\ln(\frac{v_{Rb}}{v_{Cs}}) = (-1.07 \pm 0.49) \times 10^{-16} yr^{-1}$

Or search for a modulation at Earth rotation frequency Differential redshift test $\ d
u/
u = (1+eta) dU/c^2$

$$\beta({}^{87}Rb) - \beta({}^{133}Cs) = (-4.7 \pm 5.3) \times 10^{-7}$$

J. Guéna et al., SYRTE and Phys. Rev.Lett. 109 (2012)

• With QED calculations:

J. Prestage, et al., PRL (1995), V. Dzuba, et al., PRA (1999)

$$\frac{d}{dt}\ln(\frac{g_{Rb}}{g_{Cs}}\alpha^{-0.49}) = (-1.07 \pm 0.49) \times 10^{-16} \, yr^{-10}$$

• With QCD calculations:

T.H. Dinh et al., PRA79 (2009)

$$\frac{d}{dt} \ln[\alpha^{-0.49} (m_q / \Lambda_{QCD})^{-0.021}] = (-1.07 \pm 0.49) \times 10^{-16} \, yr^{-1}$$

Variabilité des constantes fondamentales: limites actuelles

Quelques perspectives

La mission spatiale PHARAO/ACES

1997

CENTRE NATIONAL D'ETUDES SPATIALES

- Horloge à atomes froids dans l'espace
- Tests de physique fondamentale
- Accès mondial

L'horloge PHARAO

L'équipe PHARAO à Toulouse

L'horloge spatiale à atomes froids PHARAO

tube césium

source laser

Tests du modèle de vol terminés. Stabilité et exactitude attendues dans l'espace:10⁻¹⁶ Livré à l'ESA en Juillet 2014

Un test de l'effet Einstein

Décalage de fréquence 4.59 10⁻¹¹ Horloges d'exactitude 10⁻¹⁶ Test à 2 10⁻⁶

ACES Network of Ground Institutes

First MWL Ground terminal delivered to PTB in 2015

ACES sur la plateforme externe de Columbus

S122E00989

L'ISS

date de lancement prévue: fin 2018 durée de la mission : 18 à 36 mois Tests fondamentaux avec des gaz quantiques

Nouvelle frontière: mesures de précision et physique à N corps

E. CornellW. KetterleC. WiemanS. HarocheD. WinelandNobel prize 2001: Bose-Einstein condensationNobel prize 2012: quantum systems

Les interactions entre atomes: une limite à la précision Exemple: fontaines à césium ou Rubidium

Utiliser la statistique quantique ou les interactions entre atomes Pour améliorer la précision

Spin squeezing, lasers à atomes, interférométrie

Bosons et fermions ultrafroids Condensation de Bose-Einstein et fermions dégénérés

Science, <u>269</u>, 198 (1995) E. Cornell and C. Wieman, Phys. Rev. Lett. <u>75</u>, 3969 (1995) W. Ketterle

F. Schreck et al., Phys. Rev. Lett. 87, (2001)

E. Rasel, W. Ertmer, Hannover

quantique du piège Horloges à fermions dégénérés: ⁸⁷Sr

Une horloge optique avec des fermions dans un réseau optique à 3 dimensions

S.L. Campbell et al., JILA, Science, Oct 6th, 2017

Seulement 0,1, 2 ou 3 atomes par site

Résonance très étroite: l'énergie d'interaction pour 2 ou 3 atomes par site est résolue. Pour 1 at/ site: pas de décalage en fréquence

Long temps de cohérence: 4s ou 6s

Une horloge optique avec des fermions ⁸⁷Sr dégénérés (2)

Deux zones du piège sur la même image: le bruit du laser est en mode commun. Sensibilité différentielle sur une image: 3 10⁻¹⁷ @1s et 3 10⁻¹⁹ @10 000 s soit le QPN

Possibilité de mesurer le décalage gravitationnel entre le haut et le bas du nuage d'atomes sur 3 mm !

Une révolution en marche La métrologie quantique

Utiliser l'intrication quantique entre particules pour améliorer la précision des mesures

S. Haroche D. Wineland

Prix Nobel 2012

Vers la limite de Heisenberg

Les fontaines atomiques fonctionnent au bruit de projection quantique: atomes non corrélés: LQS : stabilité de fréquence proportionnelle à $1/N^{1/2}$ N atomes à 2 niveaux: un ensemble de spin ½, formant un spin collectif |J| = N/2

$$\Delta J_z. \Delta J_y \ge \left| J_x / 2 \right|$$

Spin squeezing: réduire la variance dans une direction, la direction utile pour la mesure Kitagawa et Ueda, 1993, Wineland et al. 1994, approcher 1/N

Métrologie quantique

Gain en rapport signal sur bruit : facteur 10 pour 5 10⁵ atomes Sensibilité en phase: 147 microradians par cycle Ceci implique l'intrication quantique d'au moins 680 particules

Vers une horloge à états corrélés

Il « reste » à augmenter le temps d'interaction au-delà de 228 μ s tout en préservant les corrélations quantiques

Perspectives

- 1) Les horloges optiques présentent des fluctuations de temps inférieures à 1 picoseconde par jour. Nouvelle définition de la seconde requise. Progrès rapides.
- 2) Un temps précis délivré par satellites et fibres optiques terrestres avec une stabilité de la nano à la picoseconde.
- 3) Effet Einstein: un test fondamental et géodésie relativiste
- 4) Les fluctuations du potentiel gravitationnel vont limiter la précision du temps au sol à 10⁻¹⁸-10⁻¹⁹ (soit du cm au mm): Solution: mettre les horloges de références en orbite haute où ces fluctuations sont fortement réduites
- 5) Utiliser l'intrication quantique pour améliorer la précision des mesures, horloges et senseurs inertiels