

Micro-horloges atomiques

R. Boudot FEMTO-ST, CNRS, Besançon, France

rodolphe.boudot@femto-st.fr http://teams.femto-st.fr/equipe-ohms/ http://teams.femto-st.fr/MOSAIC/en

AG FIRST-TF, Workshop TF-Quantique, Nice, Nov. 2023

20^{ème} anniversaire de la première micro-horloge atomique

Besoins et spécifications

Applications

Navigation

Acquisition + rapide après perte signal GNSS Navigation avec moins de 4 satellites Véhicules autonomes, Détection d'intrusion

Sensing

Réseaux de capteurs en fonds océaniques Etudes sismiques, exploration de ressources

Réseaux mobiles / Communications

Synchronisation de stations de base Communications sécurisées

Synchronisation de réseaux

Monitoring reseaux "smart grids" Suivi d'événements dans les datacenters

Spécifications

Volume < 20 cm³ Dispositifs embarqués

Consommation < 150 mW Missions longue-durée sur batterie

Température d'opération - 40 à 85°C Compatible avec standards industriels

Stabilité de fréquence 10⁻¹¹ à 1 h et 1 jour Erreur temporelle < 1 μs/jour

J. Kitching et al., Appl. Phys. Rev. 5, 031202 (2018)

100 fois + stable à 1 jour qu'un OCXO "standard" Budget volume-consommation comparable

Blocs-clés des micro-horloges atomiques

M. Huang et al., Appl. Phys. Lett. 121, 114002 (2022)

AG FIRST-TF, Workshop TF-Quantique, Nice, Nov. 2023

Technologie de microcellule

Fournir une atmosphère pure et stable de vapeur alcaline et gaz tampon

- * Neutralité chimique par rapport au métal alcalin
 - * Hermiticité suffisante: éviter fuites de gaz
- * Compatibilité avec les techniques de fabrication collective sur wafer

Transférée industriellement

R. Vicarini et al., Sensors Actuators 280, 99 (2018).

S. Woetzel et al., Rev. Sci. Instr. 82, 033111 (2011).

S. Dyer et al., Appl. Phys. Lett. 123, 074001 (2023)

S. Dyer et al., J. Appl. Phys. 132, 134401 (2022)

J. M. Pate at al., Opt. Lett. 48, 2 (2023)

D. G. Bopp et al., J. Phys.: Photonics 3, 015002 (2020)

Micro-horloges CPT

(> 200 000 CSACs vendues)

Limitations des micro-horloges CPT

Stabilité moyen-long terme

*Déplacements lumineux

*Evolution de l'atmosphère interne de la cellule

Réduction des déplacements lumineux: interrogation type-Ramsey

N. F. Ramsey, Phys. Rev. 78, 695 (1950)

Deux interactions atome-champ séparées par un temps d'évolution libre T

Ramsey-CPT:

J. E. Thomas *et al.*, Phys. Rev. Lett. **48**, 867 (1982) T. Zanon *et al.*, Phys. Rev. Lett. **94**, 193002 (2004)

AG FIRST-TF, Workshop TF-Quantique, Nice, Nov. 2023

"Symmetric Auto-Balanced Ramsey" (SABR)

Signaux d'erreur ε_S et ε_L extraits de cycles Ramsey de temps noir différents T_S and T_L .

1 signal d'erreur pour corriger freq. LO 1 signal d'erreur pour compenser déplacement lumineux

C. Sanner *et al.*, Phys. Rev. Lett. **120**, 053602 (2018) M. Abdel Hafiz *et al.*, Appl. Phys. Lett. **112**, 244102 (2018)

La sensibilité de la fréquence d'horloge aux paramètres du champ lumineux est **réduite** par un facteur > <u>100</u>

M. Abdel Hafiz et al., Appl. Phys. Lett. 120, 064101 (2022)

Perméation de gaz

Fuite de gaz tampon à travers le verre de la cellule par perméation (Ne: 7.5x10⁻⁸/Torr)

Perméation de différents verres (BSG, ASG, et dépôts Al₂O₃) à l'hélium ("traceur de gaz")

Réduction de la perméation He > 1000 avec ASG + Al_2O_3

C. Carlé et al., J. Appl. Phys. 133, 214501 (2023)

Horloges atomiques miniatures de nouvelle génération

Référence optique: transition 2-photons (Rb 778 nm)

Référence optique par absorption saturée (Rb 780 nm)

Largeur naturelle ~ 5 MHz Module optique: 35 cm³, 73 g, 780 mW

Stabilité: 1.7x10⁻¹² @ 1 s

Référence optique sub-Doppler bi-fréquence (Cs 895 nm)

M. Abdel Hafiz *et al.*, Opt. Lett. **41**, 13, 2982 (2016) D. Brazhnikov *et al.*, Phys. Rev. A **99**, 062508 (2019)

Conclusions et perspectives

Etat de l'art: 1.8 x 10⁻¹³ à 1 s, plateau approchant 10⁻¹⁴

Court terme:

Court-terme: déjà 100 à 1000 fois meilleures que micro-horloges CPT commerciales

Moyen terme:

Déplacements lumineux / Superposition des faisceaux contre-propageants

C. Audoin et al., IEEE TIM 40, 121 (1991)

C. A. McLemore et al., PRAp **18**, 054054 (2022) J. Guo et al., Sci. Adv. **8**, eabp9006 (2022)

Sonder des transitions optiques ultra-étroites Cellules MEMS autonomes ultra-pures

Stabilité court-terme limitée par le laser

Développement de lasers intégrés ultra-bas bruit

Nouveaux régimes de confinement / d'interrogation Rydberg ? Atomes froids ?

C. C. Nshii *et al.*, Nature Nano **8**, 321 (2013) JP McGilligan *et al.*, APL **117**, 054001 (2020) R. Boudot *et al.*, Sci. Rep. **10**, 16590 (2020)

Avancées bénéfiques pour autres capteurs quantiques intégrés

Remerciements

FEMTO-ST

Nicolas Passilly Clément Carlé Moustafa Abdel Hafiz Philippe Abbé Andrei Mursa Jacques Millo Martin Callejo Anthony Gusching Rémy Vicarini Ivan Ryger (*now at JILA*) Shervin Keshavarzi (*now at NG*) Enrico Rubiola Christophe Gorecki (*retired*) Vincent Giordano *etc.....!*

SYRTE

Emeric de Clercq Stéphane Guérandel Pierre Bonnay Philippe Laurent

IEMN/Centrale Lille Vincent Maurice Ravinder Chutani

INRIM Claudio Calosso

SYRLINKS Jean-Marie Danet,etc.

TRONICS Vincent Gaff, etc. NIST - Atomic Devices & Instr. John Kitching Elizabeth Donley Kaitlin Moore

University Strathclyde

James McGilligan Erling Riis

FOTON Stéphane Trébaol

Laser ultra-stable intégré sur puce Si₃N₄

J. Guo et al., Sci. Adv. 8, eabp9006 (2022)

C. A. McLemore et al., Phys. Rev. A. 18, 054054 (2022)

Laser III-V/Si/Si₃N₄ Grating Si₃N₄ DB ultra-sélectif Résonateur spiral Si₃N₄ sur puce Fonderie 200 mm CMOS [Q=126x10⁶, FSR: 135 MHz]

Micro-cavité FP 8 mL Spacer ULE (D=2.54 cm, L=1 cm) Micro-miroirs (ep: 3mm) *contactés optiquement sur spacer *définis par photolitho. *gravés par RIE dans substrat SF Finesse: 10⁶ Pompage sous vide passif

Vers des cellules MEMS ultra-pures

Microfabricated cells with break- and make-seals

Glass-blowing techniques adapted to MEMS technologies for wafer-level vapor cells

Thanks to P. Bonnay

Vers des cellules MEMS ultra-pures

Banc de remplissage traditionnel adapté aux technologies MEMS

V. Maurice et al., Nature Microsystems and Nanoengineering 8, 129 (2022).

Technologie de microcellule

S. Knappe et al. Opt. Lett. **30**, 2351–2353 (2005).

- + Stabilité démontrée
- Difficult to parallelize
- Complex setup

See also:

D. G. Bopp *et al.*, J. Phys.: Photonics **3**, 015002 (2020)
S. Dyer *et al.*, J. Appl. Phys. **132**, 134401 (2022)
S. Dyer *et al.*, Appl. Phys. Lett. **123**, 074001 (2023)
J. M. Pate *at al.*, Opt. Lett. **48**, 2 (2023)

S. Woetzel et al. Rev. Sci. Instr. 82, 033111 (2011).

- + Equipement simple
- Quantités Cs et N₂ liées
- Quantité Cs trop faible

C (FEMTO-ST, UT Wrocław)

A. Douahi *et al. Elec. Lett.* **43**, 33–34 (2007). M. Hasegawa *et al.* Sens. Act. Phys: A **167**, 594 (2011).

+ Equipement simple

- + Stabilité démntrée
- N₂ non compatible
- Volume, coûteuse

Wafer-level integration

Objectives:

Cavity oriented along the wafer plane \rightarrow extend at will the cavity length

Wafer-level integration \rightarrow VCSEL and photodiode on the same plane

Small laser beam (650 μ m) \rightarrow use microfabricated optical elements

Correct for the 54.7° silicon plane angle \rightarrow diffraction gratings \rightarrow order selection mask

R. K. Chutani et *al. Sci. Rep.* **5**, 14001 (2015). N. Passilly *et al.* US9488962B2 (2014).

Référence optique à microcellule Cs proche-UV (459 nm)

A chip-scale Rb beam clock

Use of graphite-based dispensers

EON σ_y(τ)
 σ_y(τ)
 σ_y(---- $1.2 \times 10^{-9} / \sqrt{\tau}$ 10⁻⁹ ADEV 10^{-10} 15 kHz 10⁰ 10¹ 10² 10^{3} τ(s) –25 0 25 v_{mod} – v_{HF} (kHz) 50 75 G. D. Martinez et al., Nature Comm. 14, 3501 (2023).

Conclusions et perspectives

Micro-horloges CPT industrielles

15 cm³, 150 mW, 1μs/jour
Communications, Navigation, Synchronisation, etc.
Etat de l'art en laboratoire: 1.5 x 10⁻¹² à 1 jour
(Cellules, méthodes d'interrogation avancées, etc.)

Références optiques à microcellule

Spectroscopie sub-Doppler (ni UHV, ni atomes froids) Gamme basse des 10⁻¹³ à 1 s : limitées par le bruit FM du laser

Atteindre la gamme des 10⁻¹⁵ à 1 s est un objectif réaliste.

Lasers intégrés "on-chip" ultra-bas bruit + cellules MEMS ultra-pures

Nouveaux régimes de confinement / d'interrogation

Rydberg ? Atomes froids ?

Progrès bénéfiques pour autres capteurs quantiques intégrés

C. C. Nshii *et al.,* Nature Nano **8**, 321 (2013)

Integrated quantum sensors

Optically-pumped magnetometers Now reaching sensitivities comparable to SQUIDs (few 10 fT/)

P. D. D. Schwindt *et al. Appl. Phys. Lett.* 85, 6409 (2004).
E. Boto *et al. Nature* (2018)
https://www.cercamagnetics.com/
https://fieldlineinc.com/
E. J. Pratt *et al. Optical and Quantum Sensing and Precision Metrology* 1170032 (SPIE, 2021).
https://www.kernel.com/flux

Compact, room temperature sensors for magnetoencephalography

FieldLine

