

Exploiting impurities in diamond for nanoscale measurements

Isabelle PHILIP – Chercheur CNRS

CNRS – Laboratoire Charles Coulomb

Vincent JACQUES

Aurore FINCO

The Nitrogen-Vacancy center

Nanodiamonds

Diamond nanostructures

Appl. Phys. Lett. 97, 241901 (2010)

Nat. Nanotechnol. 7, 320 (2012)

The Nitrogen-Vacancy center

The Nitrogen-Vacancy center

- > Operates under ambient conditions
- > Sensitivity ~ 1 $\mu T/\sqrt{Hz}$
- > Spatial resolution $\sim 50 \text{ nm}$
- Quantitative and vectorial measurements

Condensed matter

Magnetic order in magnetic systems that, by nature, feature very small magnetization

COULOMB

The Nitrogen-Vacancy center as a sensor

Magnetic fields

@ nanoscale and room temperature

Temperature

Magnetic noise

Detection of a magnetic noise

Detection of a magnetic noise

Detection of a magnetic noise

 $\frac{1}{T_1} = \frac{1}{T_1^0} + 3\gamma^2 S_{B_\perp}(D)$

 $S_{B_1}(T^2Hz^{-1})\times 10^{-18}$

Superparamagnetic nanoparticules

Nano Lett. 15, 4942, (2015)

Condensed matter

> Spin waves

Science, 357, 195 (2017)

Johnson noise

Science 347, 1129 (2015)

Detection of a magnetic noise

Spin polatization by optical pumping

Spin relaxation

C

Phys. Rev. B 103, 235418 (2021)

Obj Diamond tip Single NV center + ۲d Co Ru/Pt Со CITSTHALES Collaboration with W. LEGRAND et al.

Fast optical detection of a magnetic noise

Different noise properties above domains and domain walls

Different noise properties above domains and domain walls

Fast optical detection of a magnetic noise

The Nitrogen-Vacancy center as a sensor

Magnetic fields

@ nanoscale and room temperature

Temperature

Magnetic noise

Condensed matter

Biological species

Thermal sensitivity

Sensor architecture

AIP Advances 10, 025027 (2020)

Sensor architecture

• Evolution of D as a function of T : dD/dT

Thermal sensitivity

- Number of collected photons out of resonance \mathcal{R}
 - Increased number of NVs \rightarrow more emitted photons
 - \clubsuit Conical tip \rightarrow more collected photons

Thermal sensitivity

 $\eta_T \approx rac{1}{\left|rac{\mathrm{d}D}{\mathrm{d}T}
ight|} rac{\Delta v}{C\sqrt{\mathcal{R}}}$

Sensor architecture

Normalized optical power

- Evolution of D as a function of T : dD/dT
- Number of collected photons out of resonance \mathcal{R}
 - $\clubsuit \quad \text{Increased number of NVs} \to \text{more emitted photons}$
 - $\ \ \, \bullet \quad \ \ \, Conical \ tip \rightarrow more \ collected \ photons$
- Linewitdth Δv
- ✤ Contrast C

- Coherence time (about 1 μs)
- Laser and microwave powers

Perspectives

Electric fields

 $26 \text{ mV} \mu\text{m}^{-1} \text{Hz}^{-1/2} (\text{AC})$ $2 \text{ V} \mu\text{m}^{-2} \text{Hz}^{-1/2} (\text{DC})$ Sub-100 nm resolution

npj Quantum Information 8, 107 (2022) Nat. Comm.12, 2457 (2021)

Magnetic fields

From μ T/Hz^{1/2} down to tens nT/Hz^{1/2} Sub-100 nm resolution

Temperature

Sub-K/Hz^{1/2} Sub-100 nm resolution

Magnetic noise

 $\mu T^2.MHz^{-1}/Hz^{1/2}$ Sub-100 nm resolution

Novel defects in diamond (SiV, GeV, SnV, G4V)

Defects in wide bandgap materials (SiC, GaN...)

Defects in 2D materials

Thanks

LABORATOIRE

Elias SFEIR

Maxime ROLLO

CNrS

Tristan CLUA-PROVOST

Rana TANOS

Zhao MU

Angela HAYKAL

Mami

